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i rcuit-Switched Broadcasting 
in Torus Networks 

Joseph G. Peters and Michel Syska 

Abstract-In this paper we present three broadcast algorithms and lower bounds on the three main components of the broadcast 
time for 2-dimensional torus networks (wrap-around meshes) that use synchronous circuit-switched routing. The first algorithm is 
based on a recursive tiling of a torus and is optimal in terms of both phases and intermediate switch settings when the start-up time 
to initiate message transmissions is the dominant cost. It is the first broadcast algorithm to match the lower bound of log5 N o n  
number of phases (where N is the number of nodes). The second and third algorithms are hybrids which combine circuit-switching 
with the pipelining and arc-disjoint spanning trees techniques that are commonly used to speed up store-and-forward routing. When 
the propagation time of messages through the network is significant, our hybrid algorithms achieve close to optimal performance in 
terms of phases, intermediate switch settings, and total transmission time. They are the first algorithms to achieve this performance 
in terms of all three parameters simultaneously. 

index Terms-Broadcasting, torus networks, circuit-switched routing, tilings, pipelining. 

+ 

ISTRIBUTED memory multicomputer systems in which 
the processors communicate by exchanging messages 

over an interconnection network are an increasingly popular 
method for achieving cost-effective high-performance com- 
puting. The performance of a message-passing system is 
strongly dependent on the topology of the interconnection 
network and on the routing mechanism that is used to 
move information around the network. Multidimensional 
tori (wrap-around meshes, toroidal meshes, k-ary n-cubes) are 
currently popular interconnection networks because their 
low degrees permit efficient layouts and construction with 
standard components [lo]. The relatively large diameters of 
tori are a disadvantage when store-and-forward routing is 
used because communication time for store-and-forward 
routing is proportional to the diameter of the network. 
Store-and-forward routing has been displaced by circuit- 
switched routing in many recent multicomputer systems 
such as the Cray T3D [24], Fujitsu APlOOO [30], INMOS 
T9000 [34], Intel Paragon [33], iWarp [6], [7], and nCUBE-2 
[32]. Since the cost of circuit-switched routing is less de- 
pendent than store-and-forward routing on the diameter of 
a network, torus networks with circuit-switched routing are 
a practical choice. 

Broadcasting is a one-to-all information dissemination 
problem in which information originating at one node of a 

0 1. Peters is with the School of Computing Science, Simon Fraser University, 

M. Syskn is zoith Laboratoire 13S - CNRS - UXA 1376, Universite'de Nice - 
Burnaby, B.C., Canada V5A 1 S6.E-mail: peters@cs.sfn.ca. 

Sophia Antipolis, 06903 Sophia-Antipolis Cedex, France. 
E-nzail: inichel.syska@alto.unice.fr. 

Manuscript received June. 10,1993; revised Apr. 30,1994. This research was done 
while MY. Peters was visiting CNRS, Universitk de Nice-Sophia Antipolis, and 
zvhile Mr .  Syska was visiting the School of Computing Science, Simon Fraser 
University. 
Fov information on obtaining Yeprints of this article, please send e-mail to: 
transactions@computev.ors, and reference IEEECS Log Number 095085. 

network must be distributed to all other nodes of the net- 
work. The broadcasting problem has been studied for many 
different network topologies and routing strategies. Until 
recently, research on broadcasting concentrated on unit cost 
store-and-forward models in which each message transmis- 
sion travels along one communication link and takes one 
unit of time. Much of the recent research on broadcasting 
has used linear cost models in which the propagation time 
of a message is proportional to the length of the message. 
Linear cost models have been used to study both store-and- 
forward routing [12], [16], [26], [31] and various types of 
circuit-switched routing including direct connect 1231, virtual 
cut-through [17], and wormhole routing [8], [lo], [281. See [15] 
for a thorough survey of earlier work on unit cost models 
and [131 for a recent survey of store-and-forward routing 
under both unit cost and linear cost models. 

In this paper, we present three new broadcast algorithms 
for 2-dimensional torus networks which use circuit- 
switched routing and a linear cost model. Our first algorithm, 
based on tilings of a torus, minimizes the number of 
sequential message transmissions, or phases, in a broadcast 
assuming that the start-up time to initiate message trans- 
missions is the dominant cost. Our second algorithm, based 
on divide-and-conquer, and our third algorithm, based on 
H-trees, are intended for situations in which the total time 
for a broadcast can be reduced by splitting messages into 
packets for simultaneous transmission at the expense of an 
increase in the total cost to initiate transmissions. 

We prove that our tiling algorithm is optimal when the 
messages are short or when the time to initiate a message 
transmission is much larger than the unit propagation time of 
a message along a link. The latter situation is the case in 
many current multiprocessor networks. When the start-up 
time for message transmissions is negligible or when mes- 
sages are very long, optimal asymptotic performance can be 
obtained by simulating a store-and-forward algorithm based 
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on the arc disjoint spanning trees in [22]. However, any store- 
and-forward algorithm will use exponentially more phases 
than our first algorithm. Our divide-and-conquer and H-trees 
algorithms are new circuit-switching algorithms that achieve 
asymptotic performance very close to a store-and-forward 
algorithm for long messages using numbers of phases very 
close to our tiling algorithm. These algorithms are well suited 
to applications that involve the broadcasting of large 
amounts of data, such as linear algebra computations that 
broadcast large arrays of floating point numbers (see [ll] for 
example). Both the divide-and-conquer and H-trees algo- 
rithms will outperform the store-and-forward algorithm in 
all cases except the extreme case in which the time to trans- 
mit a message is more than exponentially longer than the 
time to initiate a message transmission. They are the first al- 
gorithms to simultaneously achieve close to optimal per- 
formance (i.e., within small constant factors) in terms of both 
start-up time and propagation time through the network. 

In the next section, we describe both store-and-forward and 
circuit-switched routing and define the linear cost model for 
both types of routing. We also survey previous work on broad- 
casting in torus networks. In the third section, we give lower 
bounds on the various components of the linear cost model. In 
Sections 4 and 5, we develop and analyze our new algorithms. 
We conclude with a comparison of our algorithms with store- 
and-forward algorithms and with our lower bounds. 

2 MODELS OF COMMUNICATION 

In a p x 9 2-dimensional torus network, each node has a 
label (i,  j )  and four neighbors (i, j + l), (i, j - l), (i  + 1, j )  and 
(i - 1, j )  where the first component of a label is an integer 
mod p and the second is an integer mod q. The diameter of 

a p x q torus is D = + 3 . We will use the link-bounded 14 1 2 1  

[131 (or shouting [15]) model of communication in which a 
processor can use all of its communication links simultane- 
ously. In contrast, the processor-bounded (or whispering) 
model permits the use of only one link at any given time. 
We also assume that the communication links are fill- 
duplex so that messages can travel in both directions simul- 
taneously. Thus, in a 2-dimensional torus network, each 
node has four ports for incoming messages and 4 ports for 
outgoing messages. We assume that a node can switch 
through a message by connecting an input port to an output 
port. In a 2-dimensional torus, as many as four messages 
can be switched through a node simultaneously. 

When store-and-fomard routing is used to send a message 
along a path of d links, the message is stored in buffers at in- 
termediate nodes on the path. An intermediate node does not 
begin to send the message to the next node on the path until it 
has received the entire message. Thus, the transmission time 
for a message of length L to be sent distance d in the linear cost 
model is d(/3 + Lt$ where /3 is the time to initiate a message 
transmission and 1 / z is the bandwidth of the communication 
links. (We assume that all links have the same bandwidth.) 
The total time to complete a broadcast can be reduced by par- 
titioning the message into packets and using a pipelining tech- 
nique to send the packets consecutively along the communi- 
cation links [26], [31], 1161. The time can be further reduced by 

distributing the broadcast over several arc-disjoint spanning 
trees. Using pipelining and k arc-disjoint spanning trees of 
maximum depth h, and choosing the packet size carefully, gives 

a propagation time of (dm + ,/my 131. Combining 

this result with the four arc-disjoint spanning trees of depth 

D + 1 = Le] + IS] + 1 from [221 p e s  time (m + ,/m12 
to broadcast in a p x 9 torus. 

When circuit-switched routing is used, a header containing the 
destination address is sent through the network to ''build a 
path. At each intermediate node on the path, the input and out- 
put ports used by the header are connected. When the destina- 
tion node receives the header, it sends an acknowledgment back 
to the source node establishing a direct connection between 
source and destination. The bytes of the message are then sent in 
pipeline fashion. Since the message is switched through inter- 
mediate nodes, there is no need to buffer the entire message. The 
links of the path can be released as the last byte passes through 
each node or by an acknowledgment from the destination node 
when the last byte is received. The former case is known as direct 
connect 1231. In a wormhole implementation of circuit-switching, 
the header establishes a path to the destination in the same way 
as in a direct connect implementation, but an acknowledgment 
is not sent back to the source node. Instead, the remaining bytes 
immediately follow the header in pipeline fashion with the last 
byte releasing the switches as it passes through. The Torus 
Routing Chip described in [9] uses wormhole routing for point- 
to-point (i.e., one-to-one) communications and can be used to 
build multidimensional tori [8]. 

In the linear cost model, when circuit-switched routing is 
used, the transmission time for a message of length L to be 
sent distance d is a + dS+ Lz, where a i s  the time to initiate a 
new message transmission, Sis the time to switch an inter- 
mediate node, and 1 / z is the bandwidth of the communica- 
tion links. In most current machines, message transmissions 
are initiated in software and switching is done in hardware, 
so Sis usually much smaller than a. Furthermore, a is usu- 
ally much larger than z. For example, in the iPSC/860, the 
time to transmit L < 100 bytes over a distance d has been 
measured to be (65 + 10d + 0. 425L) p 141, [5]. Store-and- 
forward routing can be simulated by circuit-switched routing 
by restricting d to be 1 for all transmissions, so the store-and- 
forward upper bounds stated above are also upper bounds 
for circuit-switched systems with /3= a+ S. 

There are other factors that affect the transmission time 
of a message. One factor is the propagation time for the 
header when setting up the path. Depending on the type of 
circuit-switching, there can also be propagation times for 
acknowledgments sent by the destination node at the 
beginning and at the end of a message transmission. A sec- 
ond factor is router contention. Since routers can "switch 
through several paths by connecting pairs of ports, there 
can be contention when these paths are being set up. How- 
ever, there is no router contention after the paths have been 
established, and no buffering of messages, so the propagation 
time of a message from source to destination is not affected 
by the number of nodes through which it is switched or the 
numbers of other messages that are being switched through 
those nodes. We will omit further mention of these factors 
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since their effects are small and we can account for them by 
replacing the constants a, S, and z, and the parameter L, 
with slightly larger values. Seidel [27] discusses a longer list of 
factors that can affect real message passing systems, and con- 
cludes from experiments on the Intel Delta that most of them 
contribute very little to the overall cost of communication. 

In the wormhole routing model, only the total switch- 
ing time depends on the distance d ,  so it is possible that 
the last byte of a message has left the originator before the 
header reaches the destination. This could happen, for 
example, if the message is very short or d is large. This 
cannot happen in the direct connect model because the 
source and destination nodes are synchronized. The 
transmission times for wormhole routing and direct con- 
nect routing are similar when messages are long or the 
paths are short or both. When messages are short and the 
paths are long, the two routing methods behave quite dif- 
ferently. However, in this case, the dominant factor is a. 
The a factor is proportional to the number of phases, and 
this cannot be reduced by using wormhole routing in- 
stead of direct connect routing, so the transmission times 
will be similar. Since direct connect routing is easier to 
analyze than wormhole routing (because the source and 
destination nodes are synchronized in direct connect 
routing), we will adopt the direct connect model in this 
paper. We emphasize, however, that all of our algorithms 
can be used without modification with any type of circuit- 
switched routing, and that all of the bounds that we de- 
rive are valid for any type of circuit-switching. 

Two currently available components that can be used 
to build torus networks with all of the properties de- 
scribed above are the iWarp cell [ 6 ] ,  [7] and the T9000 
Transputer 1341. The iWarp cell has four input and four 
output ports, each with a 40 Mbyte per second band- 
width. The bandwidth from memory to the communica- 
tion controller is 160 Mbyte per second and the hardware 
supports multiplexing. The T9000 Transputer has a sepa- 
rate DMA controller for each input and each output 
channel, and four internal busses that provide multiport 
access to the on-chip cache. 

When any type of circuit-switched routing is used, and 
communication patterns are arbitrary, deadlock is possi- 
ble. In particular, if several headers are trying to establish 
routes and each has constructed a partial route containing 
links needed for the other routes, then none of the headers 
will reach its destination. Many papers on wormhole 
routing are more concerned with deadlock avoidance than 
with efficiency [lo], 1201, 1181, 1191. The most common 
deadlock avoidance method is the use of virtual channels 
which use multiplexing to share physical links. Since our 
algorithm uses fixed, predetermined communication pat- 
terns, and the paths used during any phase are arc- 
disjoint, there is no possibility of deadlock. Since our al- 
gorithms are also synchronous, virtual channels offer no 
performance advantages that our algorithms can exploit, 
so we will ignore virtual channels. 

The minimum phase wormhole broadcast algorithm in 
[2] shows that broadcasting can be done more efficiently in 
a processor-bounded system with circuit-switched rout- 
ing than with store-and-forward routing. The tiling algo- 

rithm that we present in Section 4 is a minimum phase 
circuit-switched broadcast algorithm for link-bounded 
systems. A minimum phase circuit-switched broadcast 
algorithm for link-bounded systems is also presented in 
[25]. However, the model used in [25] is a unit cost model 
that ignores 6, L, and z, and the algorithm is nonuniform 
in the sense that messages in the same phase can travel 
over different numbers of links. In contrast, the algo- 
rithm in Section 4 is uniform and simultaneously mini- 
mizes the a a n d  Gterms. 

3 LOWER BOUNDS 

The total transmission time for broadcasting in the linear 
cost circuit-switched model has three components: the total 
start-up time, the total switching time,’ and the total propagation 
time. These components are measured in terms of a, S, and z 
respectively. We can prove lower bounds on these compo- 
nents individually and in combination. 

The total start-up time depends on the number of 
phases in a broadcast. A phase for a node that is sending a 
message starts when the node begins the initiation of the 
transmission and ends when the links over which the 
message was sent are released. For a node that is receiving 
a message, a phase starts when the header reaches the 
node and ends when the link on which the message arrived 
is released. Notice that the phases of the source and desti- 
nation nodes of a message transmission do not start and 
end at exactly the same times. Furthermore, our definition 
of phase ignores the fact that a node can be sending and 
receiving different messages on each of its links and the 
starting and ending times for these transmissions can all 
be different. Thus, according to our definition, a node in 
a 2-dimensional torus could be in as many as eight 
different phases simultaneously. 

To simplify our lower and upper bound analyses, we 
will assume that a node is in at most one phase at any given 
time. This assumption restricts the class of broadcast algo- 
rithms that we can analyze, but has no effect on the gener- 
ality of our lower bounds. Since none of the algorithms de- 
scribed in this paper take advantage of the more general 
definition of phase, the assumption does not affect any of 
our upper bounds. Algorithms based on wormhole routing 
can take advantage of the more general definition of phase 
to reduce broadcast time, but the lower bounds in this sec- 
tion, and the upper bounds derived in later sections are all 
still valid for wormhole routing. 

The movement of information in a broadcast is partially 
ordered because a node cannot send information before it 
has received it. Some of our lower bounds are based on 
determinations of minimum length critical paths in partial 
orders and others are based on analyses of bottlenecks in 
networks. None of our arguments rely on the definition of 
phase, so none of our lower bounds are affected by the 
simplifying assumption. 

PROPOSITION 1. In a vertex-transitive graph G with N nodes, 
degree A, edge connectivity 1, and diameter D, the minimum 
time to bvoadcast a message of length L is 

, 

max( rlog,+,N]a, D6,  , a + D6 + 5). 
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PROOF. First consider the total start-up time. When a source 
node initiates a message transmission, it incurs a cost of 
aand can transmit the message to at most A other nodes 
without incurring further start-up costs. Each of these A 
nodes can begin to forward the message to at most A 
more nodes as soon at it receives the header of the mes- 
sage from the source node, but each of these "second 
generation" transmissions incurs a start-up cost of a 
After it has completed its first set of transmissions, the 
source node can also start to inform a "second generation" 
of A more nodes. These A + 1 "second generation" 
transmissions can start at different times, but no "third 
generation" node can receive the header of the message 
before at least 2 a  time units have elapsed. Continuing in 
this way, it is easy to see that at most (A + 1) nodes can 
have the message after k a  time units, and it follows that 
the total start-up time is at least r logA+ N 1 a. 

The following arguments are simple extensions of 
the arguments developed in [16], [31] for store-and- 
forward routing in hypercubes. 

The lower bound of DSon total switching time is 
immediate since the message must travel along a path 
of length at least D from the source to at least one 
other node, and this path contains at least D switches. 

If the edge connectivity of G is A, then there is an 
edge cut of size h which separates the source node 
from at least one other node. The bandwidth of this 
cut is 4, so the minimum propagation time for a mes- 
sage of length L through this edge cut is F. 

The final term of the lower bound is the minimum 
time for the message to reach a node at distance D 
from the source. The header of the message cannot 
be received by this node in less than a + DS+ z time 
units (assuming that the header has unit length). 
Since the node can receive information on all A of its 
edges simultaneously, it can receive A units of mes- 
sage by time a + DS + z and the remaining L - A 
units of message require at least z more time. U 

COROLLARY 1. In an n x n 2-dimensional torus, the minimum 
time to broadcast a message of length L is 

k 

When the messages are short or when a is much larger 
than Sand 5 the minimum time to broadcast in a 2-dimensional 
p x q torus approaches r log, p q  1 a. 

4 AN OPTIMAL ALGORITHM FOR SHORT MESSAGES 

The broadcast algorithm presented in this section can be viewed 
as a recursive tiling of a torus. We will take a direct approach to 
the development of our algorithm that avoids the sophisticated 
machinery that has been developed to study tilings. For an ex- 
tensive treatment of tilings in general and tilings of the torus in 
particular, the reader is referred to [14], [29], respectively. 

Fig. 1 shows two phases of a broadcast algorithm in a 
2-dimensional mesh. We assume that the nodes have la- 

bels of the form (i, j ) .  The originator of the broadcast is the 
black node in the center of the diagram, and we assume 
that it has label (0, 0). In the first phase, the originator 
uses the knight's move paths (shown as heavy arrows) to 
broadcast the message to the four black nodes which have 
labels (1, 2) ,  (-1, -2), (2,  -l), and (-2, 1). Notice that the 
four paths are arc disjoint. In the second phase, each black 
node (x, y), including (0, 0), sends the message to its four 
immediate neighbors (x + 1, y), (x - 1, y), (x ,  y + l), and 
(x, y - 1). The shading in Fig. 1 shows the "informed area" 
of the mesh after two phases. It is easy to see that this 
shaded area can be cut out and the links wrapped around 
from top to bottom and from left to right to form a 5 x 5 
torus. The broadcast time is 2 a +  4S+ ~ L z .  

Fig. 1. Broadcasting in a mesh. 

To reduce the complexity of the figures in this section, 
we will use a pictorial representation of broadcast algo- 
rithms. Fig. 2 corresponds to the shaded area of Fig. 1. 
The originator (0, 0) is at the point in the center of the 
black cross. The four nodes with indices (1, 2), (-1, -21, 
(2, -l), and (-2, 1) that are informed by the originator 
during the first phase are at the centers of the small 
white crosses. The knight's move paths used in the first 
phase are shown as diagonal lines in Fig. 2 for clarity. 
The 20 nodes informed during the second phase are at 
the extreme points of the five small white crosses. 

We can view the shaded area in Fig. 2 as a 5 x 5 "square" 
which we denote S,. The four "corners" of SI are shown as 

black circles. The top "edge" of SI consists of nine line 
segments which have orientations "right-down-right-up- 
right-up-right-down-right" when proceeding from the top 
left corner to the top right corner. We will call this edge an 
E ,  edge with the clockwise orientation being understood. 
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Fig. 2. A 5 x 5 torus drawn as an SI square. Fig. 3. A Cl cross 

Clearly, the other three edges of S, are rotations of E,. An E, 
edge has 180 degree rotational symmetry so the E, edges on 
the top and bottom of an S, fit perfectly into each other 
when wrapped around, as do E ,  edges on the left and right 
sides of an S,. A 5 x 5 torus is obtained by identifying all 
four corners of an S, with a single point. 

We can build bigger tilings by identlfying the corners of 
several S, squares. Fig. 3 shows one possible tiling using five 

S, squares. Some of the details of the broadcast algorithm are 
omitted from the four outer S, squares to s i m p w  the dia- 
gram. The tiling in Fig. 3 does not wrap around to form a 
torus, but we can view the shaded area as a "cross" in the 
same sense that SI is a square. Each corner of the cross is 
shown as a black circle and each "edge" of the perimeter of 
the cross is an E,. We will denote this cross by C,. We will use 
So to denote a simple square that covers an area containing a 

single node and CO to denote a simple cross formed from five 
Sos (such as the black cross in the middle of Fig. 2 or Fig. 3). A 
C1 is formed by arranging five Sls into the same pattern as 
the Sos are arranged to form a Co. Similarly, the symmetries 
of C,s allow us to form the S2 in Fig. 4 by arranging five Cls 
into the same pattern as the Cos are arranged to form an SI in 
Fig. 2. 

We can view an S, as a square with corners indicated 

by the large black circles. Each of the four "edges" of S2 
consists of 9 E ,  edges (delimited by small black circles in 
Fig. 4) arranged in the same "right-down-right-up-right- 
up-right-down-right" pattern as nine simple edges are 
arranged in an E,. It is, therefore, immediate that E2 edges 
also have 180 degree rotational symmetry and that a 25 x 25 
torus results when all four corners of an S, are identified 

Lt 

fi- 
'L 

w 
Fig. 4. A 25 x 25 torus drawn as an S, square 

tilings, as drawn in Figs 2 and 4, are Koch curves [21]. 

THEOREM 2. Bvoadcasting in a torus of size N = 5" x 5 , k 2 1, ye- 
k 

quires timeat most (log, N)" + (m - 1)6 + (log, N ) L T .  

PROOF Clearly, we can continue the construction described 
above to obtain a tiling for a torus of size 5 x 5" for any 
k 2 1. Furthermore, all of the data paths in use during 
any parhcular phase are arc disjoint. To calculate the 
time requlred by this broadcast algorithm, we need to 
determine the number of edges on each data path. To 
simplify notation in ths  proof, we will number the 
phases from last to first. During phase 1 (the last phase), 

k 

with a single point. It is curious that the outlines of our Sk the central node (x, y) of each CO broadcasts to its four 
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immediate neighbors (x + 1, y), (x - 1, y), (x, y + l), and 
(x, y - 1). During phase 2, the central node of the central 
CO of each S, broadcasts to the central nodes of the four 
other Cos in the same S,. In particular, (x, y) broadcasts to 
(x + l ,y+ 2), (x- 1,y - 2), (x + 2,y- l), and (x - 2, y + 1) 
(see Fig. 2). In general, in an odd-numbered phase 2i + 1, 
the center of the central S, of each C, is broadcasting to 

the centers of the four other S,s in the same C,. Since S,s 
are 5' x 5' "squares," the centers of two adjacent S,s in a 
C, are distance 5' apart (either horizontally or vertically). 
Similarly, in an even-numbered phase 2i, the center (x, y) 
of the central C, of each SI+, broadcasts to the centers of 
the four other C,s in the same SI+, and the data paths to 
these centers have 3 . 5' edges. In particular, during 
phase j, an informed node (x, y) will broadcast to the 
four nodes (x + U], y + vi), (x - ul, y - U?, (x + z;, y - ui), and 

(x - vI, y + ui) where 

if even and = 2 x 5i-l if even 
I 0 if odd 5 q  if odd. 

Since each informed node broadcasts to four other 
nodes during each phase, the number of phases in the 
broadcast is log, (52k)  = 2k. The total time is therefore 

2k E [a + (uj + v j ) ~  + LZ] 
]=1 

k 
= 2ka + ax [U2'-, + u2, + v2,-, + v21] + 2kLz 

1=1 
k 

= 2ka + az [ 4 5'-'] + 2 k ~ ~  
1=1 

= 2ka + ( 5 k  - 116 + 2kLZ. 

0 
Theorem 2 establishes that our algorithm is optimal in 

terms of both a and 6 for tori for which both dimensions 
are the same even power of 5. We can use different tilings 
to obtain algorithms for other sizes of tori. These algorithms 
are optimal in terms of aand are usually optimal or close to 
optimal in terms of 6: 

One way to create new tilings is to expand each node of a 
torus into a block of nodes. For example, Fig. 5 shows a CO 
cross in which each node has been expanded into a 2 x 2 
block of nodes. The node in the lower left corner of each 
block is the "boss" of the block. We can make an expanded S1 

square by combining five of these expanded Cos using the 
same pattern as in Fig. 2. To broadcast in this 10 x 10 torus, 
first perform a broadcast to the block bosses using the algo- 
rithm for an S, square. Since all the message paths are exactly 
twice as long as they were in the S1 square, the total switch- 
ing time for the two phases of the algorithm is doubled giv- 
ing a time of 2a + 86 + 2Lz. In the last phase, each boss 
broadcasts within its block. There are several ways to do this. 

The most efficient way is for the block boss (i, j )  to route the 
message directly to (i+ 1, j ) ,  indirectly to (i + 1, j + 1) via (i, j + 
l), and indirectly to (i, j + 1) via ( i  - 1, j )  and (i - 1, j + 1). This 
adds a + 36 + Lz  to the cost. (The other ways to broadcast 
within a block either use an extra phase or use virtual chan- 
nels.) We can improve on this result by changing the shape of 
the blocks for the last phase. The algorithm is the same dur- 
ing the first two phases, but during the last phase each repre- 
sentative (i, j )  broadcasts directly to ( i  - 1, j )  and (i, j + 11, and 
to ( i  + 1, j + 1) via (i + 1, j ) .  It is clear that these "slanting" 
blocks give a valid tiling. The last phase using slanting blocks 
adds only a+ 26+ Lzto the cost for a total cost of 3a+ 106+ 3Lz: 
The 3a term is optimal, and so is the 106 term since the 
diameter of a 10 x 10 torus is 10. 

We can also form a 10 x 10 torus by combining four S, 
squares as shown in Fig. 6. In effect, we are replacing a sin- 
gle s, by a 2 x 2 block of Sls. The bosses of the four S,s are 
the nodes at the centers of the white crosses, and the origi- 
nator is the boss of the lower left S1. In the first phase, the 
originator broadcasts to the three other bosses. Each boss 
then starts a normal S, broadcast in its S,. The first phase 
requires time a + 106 + Lzand the last two phases require 
2a+ 46+ 2Lzfor a total time of 3a+ 146+ 3Lz. Intuitively, 
the reason that this method is less efficient than the method 
in the preceding paragraph is because the inefficient phase 
in which informed nodes inform only three other nodes 
occurs between Sls instead of SoS. We can move the ineffi- 
cient phase even further out in the recursion for larger tori, 
but this will always be worse than doing the block broad- 
cast in the last phase. 

Fig. 5. An expanded c, cross with each node replaced by a 2x2 block. 

Fig. 6. A 10 x 10 torus made from four SI squares. 
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We can generalize our block boss technique by repeating 
the expansion of squares into 2 x 2 blocks of squares. For ex- 
ample, a second repetition on a 10 x 10 torus gives a 20 x 20 
torus. The extreme case of this generalization is to start with an 
So square (i.e., a single node) and expand the node into a 2 x 2 
block, then expand each node of this block into a 2 x 2 block, 
and so on. This will give square tori with dimensions that are 
powers of 2. Since each phase of this broadcast algorithm is an 
"inefficient" phase in which each informed node informs only 
three other nodes, the number of phases is log, N. This 
matches the performance of the divide-and-conquer algorithm 
that we will present in the next section, but the divide-and- 
conquer algorithm will be exponentially faster in terms of Lz. 

Our construction methods also work for tori that are not 
square. For example, a 5 x 10 torus can be formed by ex- 
panding each node of an SI square into a block of two hori- 
zontally adjacent nodes. In the first two phases, perform a 
broadcast to the left nodes of the blocks, and in the last phase 
each informed node broadcasts to its right neighbor. In the 
first two phases, the horizontal distances are twice as large as 
in an S1 and the vertical distances are the same as in an S1. 
The total cost is 3a+ 86+ 3Lz. The 3aterm is optimal and the 
86term is close to the lower bound of 76: 

We can generalize our constructions to any size of torus by 
expanding nodes into blocks of the appropriate dimensions. 
We have not conducted a systematic analysis of this generali- 
zation, but based on the examples above and others that we 
have analyzed, it appears that the broadcast time will be clos- 
est to the lower bounds when the torus is close to square and 
when the dimensions are close to powers of 5. When the di- 
mensions are close to powers of 2, it would be better to use the 
divide-and-conquer algorithm in the next section. 

5 EFFICIENT ALGQRITHMS FOR LQNG MESSAGES 

The tiling algorithm in the previous section is optimal with 
respect to aand S, but it is far from the lower bound on the Lz  
term. For long messages, store-and-forward routing with 
pipelining and disjoint spanning trees can be done in 

+ o(L)  time so the lower bound on Lz can be matched as- 
ymptotically with store-and-forward routing. However, the a 
term for any store-and-forward algorithm is exponentially 
larger than for the tiling algorithm. In this section we will 
combine the pipelining and disjoint spanning trees techniques 
with circuit-switched routing to obtain good performance si- 
multaneously with respect to all three of a, S, and Lz. 

The communication paths used by a broadcast algo- 
rithm form a directed spanning tree. For store-and- 
forward routing, the arcs of this broadcast tree are single 
communication links; for circuit-switched routing, they 
are paths. In both cases, the arcs of the broadcast tree 
should be arc-disjoint at any given time in the sense that 
no link is used by more than one broadcast tree arc at any 
given time. (Recall that links can be used simultaneously 
in both directions, so two arcs can share a link if their di- 
rections are different. Also note that we are not consider- 
ing virtual channels or multiplexing of messages.) 

In store-and-forward routing, a complete message must 
be received by a node before the node can begin to transmit 

it to another node. If the message is long, there can be a 
long delay between the receipt of the beginning of the mes- 
sage and the receipt of the end. Pipelining reduces this de- 
lay by partitioning the message into packets and then 
sending them one after the other along the same path. A 
node can begin to forward a message as soon as it has re- 
ceived the first packet instead of waiting for the entire mes- 
sage to arrive. Thus, the delay is reduced by overlapping 
the phases of a broadcast algorithm. This same technique 
can be used with circuit-switched routing as long as the 
paths used by overlapping phases are arc-disjoint. Unfor- 
tunately, the phases of the tiling algorithm of the previous 
section cannot be overlapped. In particular, the originator 
broadcasts to a new set of four nodes in each phase, and 
each set of four paths uses all four of the originator's out- 
going ports. A similar problem occurs at all other nodes 
that are not leaves or parents of leaves in the broadcast tree 
To take advantage of pipelining, we will use broadcast trees 
that have a maximum out-degree of four or less. This will 
increase the number of phases by a constant factor over the 
minimum-phase tiling algorithm, but the reduction in the 
Lzterm will be proportional to log5 N. 

The first algorithm of this section is based on the obvious 
divide-and-conquer approach of dividing the torus into 
four equal-sized parts, broadcasting to the centers of the 
parts, and then recursively broadcasting within the parts. 
For simplicity of exposition, we will only consider "square" 
ton in this section. However, the algorithms in this section 
can be easily extended to tori of other sizes. 

Assume for the moment that messages are not partitioned 
into packets. The broadcast algorithm for a 2k x 2k torus will 
have k phases. During phase i, i = 1 . k - 1, each node (x, y) 
that received the message during phase i - 1 broadcasts it to 
nodes (x + I ,  y + l ) ,  (x - I ,  y + l ) ,  (x + I ,  y - I ) ,  and (x - I ,  y - l ) ,  
with 1 = 2"-'. During step k, if all nodes broadcast to their 
four immediate neighbors, some nodes will not be informed 
at the end of phase k while others will receive the message 
from two of their neighbors. At the expense of a small in- 
crease in path-length we can reroute redundant transmis- 
sions to otherwise uninformed nodes as suggested in Fig. 7. 
The center node in Fig. 7 could be informed by any of the 
four centers of "crosses". However, some of the paths from 
these cross centers to the center node may overlap paths from 
previous phases. This situation would prevent pipelining 
and must be avoided. Fortunately, it is always possible to 
find paths that are arc-disjoint from the paths of all previous 
phases. Fig. 8 shows the situation for an 8 x 8 torus. The solid 
circles denote nodes that are informed by the end of phase 
k - 1 and the open circles are uninformed nodes. It should be 
clear from the figure that all paths from the first k - 1 phases 
are arc-disjoint. Nodes a, b, c, and d are all possible informers 
for node e during phase k and each has two choices of path. 
The path that goes left from b and then down uses an arc that 
was used during the first phase to broadcast from the origi- 
nator, so this path must be avoided. None of the seven other 
paths to e uses arcs that are used in any other phase. In gen- 
eral, care must be taken when informing nodes like e that are , 
at the corner of a path, but there is always at least one usable 
path from each of the four possible informers of such a node 

~ -. 
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Fig. 7. Step kof broadcasting. 
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Fig. 8. Arc-disjoint broadcast paths for an 8 x 8 torus. 

Since the broadcast tree described above is arc-disjoint, 
we can partition long messages into packets of some size B 
and use pipelining to overlap the phases and reduce the 
total cost. During the last phase, some of the paths have one 
arc and others have two. Otherwise, all paths in the same 
phase have the same length. The total number of arcs trav- 
ersed by a packet from the originator to a node that is a leaf 
of the broadcast tree is therefore either 2k -1 or 2k. The total 
cost of a broadcast using packets of size B is: 

T ( B )  = ka + 2kS  + kB7 
(for the first packet) 

+ - - 1 (a + 2k-'6 + B z )  b 1 
(for the remaining packets) 

= ( k  + + - l)(a + B z )  + 2k-'(* + 1)s 
The packet length that minimizes T(B) is 

and this gives a broadcast time of 

T(BOp,) = ( d m  + f i r  - ( k  - 2)2k-16. 

If messages are very short (or LT is much smaller than aand s) 
then pipelining does not improve the broadcast time. Thus, for 
short messages the broadcast time of this algorithm is 
ka + 2k6 = (log, N)a + m6. The aterm is only a small con- 

stant factor (= 1.16) larger than the log, N lower bound and 
the Sterm essentially matches the lower bound of m - 1. For 
long messages, the asymptotic broadcast time is Lz. This is 
much better than the (log, N)LT term of the tiling algorithm 
but it does not match the lower bound of 9. To reduce the LT 
term further, more than one arc-disjoint broadcast tree must be 
used. This is not possible with the divide-and-conquer algo- 
rithm just described because many of the nodes are using all 
four of their outgoing ports. Instead, we will use two arc- 
disjoint broadcast trees with maximum out-degree 2. The idea 
is to split the message into two parts and simultaneously 
broadcast the two parts using the two broadcast trees. This 
will halve the Lz term to 9 at the expense of doubling the a 
term. We will describe the algorithm for (2k - 1) x (2k - 1) tori. 
Extensions to tori of other sizes are not difficult. 

Fig. 9 shows a broadcast in a 3 x 3 torus using two arc- 
disjoint broadcast trees. The first tree is shown with solid 
arcs. The second, shown with broken arcs is obtained from 
the first by a 90 degree rotation. These trees are called H-trees 
for obvious reasons. The recursive definition of H-trees is 
straightforward. To construct an H-tree for a (2k - 1) x (2 - 1) 

torus, arrange four copies of an H-tree for the (2k1 - 1) x 

(2k1 - 1) torus around a cross formed from a row and col- 

umn of length 2 - 1 centered at the origin. Then connect 
the centers of the four H-trees with a new "H." Fig. 10 
shows an H-tree for a 7 x 7 torus. H-trees are well known in 
VLSI design as a method to lay out binary trees with all 

k 

k 

0 0 0 0  0 0 0  

Fig. 10. H-tree for a 7 x 7 torus. 

(a) Odd phase 

Fig. 9. H-trees for a 3 x 3 torus. 

(b) Even phase 
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leaves equidistant from the root [1]. An H-tree tree with 2k-' 
levels does not cover ail of the nodes of the torus. However, 
every node that is not informed by the H-tree has two in- 
formed neighbors, so one more phase is sufficient to com- 
plete a broadcast. 

Fig. 9 shows the two phases of a broadcast that uses 
two H-trees. The message is partitioned into two sub- 
messages X and Y. In the first phase (Fig. 9a), the origi- 
nator sends X to its vertical neighbors and Y to its hori- 
zontal neighbors. In the second phase (Fig. 9b), the origi- 
nator does the opposite and the four nodes informed in 
the first phase forward the sub-message they received to 
their two neighbors in the H-tree. This pattern of com- 
munication generalizes easily to a recursive definition of 
a broadcast algorithm using two H-trees. During each 
phase each node that received a submessage in the pre- 
vious phase forwards it to its two neighbors in the H- 
tree. During odd phases, X sub-messages are traveling 
vertically and Y sub-messages are traveling horizontally. 
During even phases, the opposite haprens. The total 
number of phases using H-trees for a (2 - 1) x (2k - 1) 
torus is 2k - 2. After 2k - 2 phases, every uninformed 
node has at least two informed neighbors, each of which 
has received both X and Y .  During the last phase each 
uninformed node receives a submessage from two of its 
informed neighbors. One of the informed neighbors 
sends X and the other sends Y .  Pipelining can be used 
with this algorithm by repeating the pattern for each 
packet. The originator first simultaneously sends the first 
packet of X vertically and the first packet of Y horizon- 
tally. The second step is to send the first packet of X 
horizontally and the first packet of Y vertically. In the 
third step, the originator sends the second packet of X 
vertically and the second packet of Y horizontally, and so 
on. The total time for this pipelining algorithm with 
packets of size B is: 

T(B) = (2k - l)a + (2k - 1)6 + (2k - 1)Bz 

(for the first packets of X and Y) 

(for the remaining packets) 

= (2k  + & - 2)(a + B T )  + (2k-2($ + 3)  - 1)6 

The packet length that minimizes T(B) is 

and this gives a broadcast time of 

- [(2k - 5)2k-2 + 116. 
For very short messages (when pipelining is not useful) 

the broadcast time is 

(211 - 1)a + ( 2 k  - 1)6 = (2 log, N + o(1))a + m 6 .  

For long messages, the broadcast time is 7. So, by using 
two arc-disjoint broadcast trees and pipelining, we have 
reduced the Lz term to within a factor of 2 of the lower 
bound asymptotically while using a number of phases that 
is within a constant factor of the optimum. 

6 CONCLUSION 
Store-and-forward routing can be simulated by circuit- 
switched routing by restricting d to be 1 for all transmissions. 
In this case, the p for the simulated store-and-forward algo- 
rithm is ,8 = a + S. We will use this value for p in  the follow- 
ing comparison of our new algorithms and store-and- 
forward algorithms. The table below summarizes the best 
upper bounds on the a, S, and Lz  terms for our three new 
algorithms and for store-and-forward broadcasting with 
pipelining and arc-disjoint broadcast trees. The table also 
contains the lower bounds on these three quantities. We have 
stated the a, S, and Lzterms separately in the table below to 
facilitate comparisons even though some of the bounds de- 
rived in ths  paper involve tradeoffs among the three terms. 
Strictly speaking, we should be distinguishing between the 
asymptotic bounds on Lz for the pipelining algorithms and 
the exact bound for the tiling algorithm. Also, all logarithms 
have been converted to base 5 to facilitate comparisons, and 
ceilings have been removed. Finally, the bounds for some of 
the algorithms were only derived for ton of certain sizes, and 
we have not shown this in the table. Nevertheless, these mi- 
nor inaccuracies do not affect the general conclusions that 
can be drawn from the table, and the results are stated pre- 
cisely earlier in the paper. 

TABLE 1 
BOUNDS FOR BROADCASTING ' 

H-trees 

Since VLSI chips are wire-limited, 2-dimensional net- 
works with low degree, such as the torus are good candi- 
dates for VLSI implementations [8].  With store-and- 
forward routing, the communication algorithms for these 
topologies require times that are at best proportional to the 
diameter of the network. The circuit-switched algorithms in 
this paper require exponentially less time when the messages 
are short and are more efficient than the best store-and- 
forward algorithm for all but extremely long messages. Our 
tiling algorithm is the first broadcast algorithm for tori to 
achieve the lower bound on the number phases. Our di- 
vide-and-conquer and H-trees algorithms are hybrids 
which combine circuit-switched routing with the pipelining 
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and arc-disjoint spanning trees techniques from store-and- 
forward routing to achieve close to optimal performance in 
terms of phases, intermediate switch settings, and total 
transmission time. They are the first algorithms to achieve this 
performance in terms of all three parameters simultaneously. 
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