
246 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 3, MARCH 1996

i rcuit-Switched Broadcasting
in Torus Networks

Joseph G. Peters and Michel Syska

Abstract-In this paper we present three broadcast algorithms and lower bounds on the three main components of the broadcast
time for 2-dimensional torus networks (wrap-around meshes) that use synchronous circuit-switched routing. The first algorithm is
based on a recursive tiling of a torus and is optimal in terms of both phases and intermediate switch settings when the start-up time
to initiate message transmissions is the dominant cost. It is the first broadcast algorithm to match the lower bound of log5 N o n
number of phases (where N is the number of nodes). The second and third algorithms are hybrids which combine circuit-switching
with the pipelining and arc-disjoint spanning trees techniques that are commonly used to speed up store-and-forward routing. When
the propagation time of messages through the network is significant, our hybrid algorithms achieve close to optimal performance in
terms of phases, intermediate switch settings, and total transmission time. They are the first algorithms to achieve this performance
in terms of all three parameters simultaneously.

index Terms-Broadcasting, torus networks, circuit-switched routing, tilings, pipelining.

+

ISTRIBUTED memory multicomputer systems in which
the processors communicate by exchanging messages

over an interconnection network are an increasingly popular
method for achieving cost-effective high-performance com-
puting. The performance of a message-passing system is
strongly dependent on the topology of the interconnection
network and on the routing mechanism that is used to
move information around the network. Multidimensional
tori (wrap-around meshes, toroidal meshes, k-ary n-cubes) are
currently popular interconnection networks because their
low degrees permit efficient layouts and construction with
standard components [lo]. The relatively large diameters of
tori are a disadvantage when store-and-forward routing is
used because communication time for store-and-forward
routing is proportional to the diameter of the network.
Store-and-forward routing has been displaced by circuit-
switched routing in many recent multicomputer systems
such as the Cray T3D [24], Fujitsu APlOOO [30], INMOS
T9000 [34], Intel Paragon [33], iWarp [6], [7], and nCUBE-2
[32]. Since the cost of circuit-switched routing is less de-
pendent than store-and-forward routing on the diameter of
a network, torus networks with circuit-switched routing are
a practical choice.

Broadcasting is a one-to-all information dissemination
problem in which information originating at one node of a

0 1. Peters is with the School of Computing Science, Simon Fraser University,

M. Syskn is zoith Laboratoire 13S - CNRS - UXA 1376, Universite'de Nice -
Burnaby, B.C., Canada V5A 1 S6.E-mail: peters@cs.sfn.ca.

Sophia Antipolis, 06903 Sophia-Antipolis Cedex, France.
E-nzail: inichel.syska@alto.unice.fr.

Manuscript received June. 10,1993; revised Apr. 30,1994. This research was done
while MY. Peters was visiting CNRS, Universitk de Nice-Sophia Antipolis, and
zvhile Mr . Syska was visiting the School of Computing Science, Simon Fraser
University.
Fov information on obtaining Yeprints of this article, please send e-mail to:
transactions@computev.ors, and reference IEEECS Log Number 095085.

network must be distributed to all other nodes of the net-
work. The broadcasting problem has been studied for many
different network topologies and routing strategies. Until
recently, research on broadcasting concentrated on unit cost
store-and-forward models in which each message transmis-
sion travels along one communication link and takes one
unit of time. Much of the recent research on broadcasting
has used linear cost models in which the propagation time
of a message is proportional to the length of the message.
Linear cost models have been used to study both store-and-
forward routing [12], [16], [26], [31] and various types of
circuit-switched routing including direct connect 1231, virtual
cut-through [17], and wormhole routing [8], [lo], [281. See [15]
for a thorough survey of earlier work on unit cost models
and [131 for a recent survey of store-and-forward routing
under both unit cost and linear cost models.

In this paper, we present three new broadcast algorithms
for 2-dimensional torus networks which use circuit-
switched routing and a linear cost model. Our first algorithm,
based on tilings of a torus, minimizes the number of
sequential message transmissions, or phases, in a broadcast
assuming that the start-up time to initiate message trans-
missions is the dominant cost. Our second algorithm, based
on divide-and-conquer, and our third algorithm, based on
H-trees, are intended for situations in which the total time
for a broadcast can be reduced by splitting messages into
packets for simultaneous transmission at the expense of an
increase in the total cost to initiate transmissions.

We prove that our tiling algorithm is optimal when the
messages are short or when the time to initiate a message
transmission is much larger than the unit propagation time of
a message along a link. The latter situation is the case in
many current multiprocessor networks. When the start-up
time for message transmissions is negligible or when mes-
sages are very long, optimal asymptotic performance can be
obtained by simulating a store-and-forward algorithm based

1045-921 9/96$05.00 01 996 IEEE

mailto:inichel.syska@alto.unice.fr

PETERS AND SYSKA: CIRCUIT-SWITCHED BROADCASTING IN TORUS NETWORKS 247

on the arc disjoint spanning trees in [22]. However, any store-
and-forward algorithm will use exponentially more phases
than our first algorithm. Our divide-and-conquer and H-trees
algorithms are new circuit-switching algorithms that achieve
asymptotic performance very close to a store-and-forward
algorithm for long messages using numbers of phases very
close to our tiling algorithm. These algorithms are well suited
to applications that involve the broadcasting of large
amounts of data, such as linear algebra computations that
broadcast large arrays of floating point numbers (see [ll] for
example). Both the divide-and-conquer and H-trees algo-
rithms will outperform the store-and-forward algorithm in
all cases except the extreme case in which the time to trans-
mit a message is more than exponentially longer than the
time to initiate a message transmission. They are the first al-
gorithms to simultaneously achieve close to optimal per-
formance (i.e., within small constant factors) in terms of both
start-up time and propagation time through the network.

In the next section, we describe both store-and-forward and
circuit-switched routing and define the linear cost model for
both types of routing. We also survey previous work on broad-
casting in torus networks. In the third section, we give lower
bounds on the various components of the linear cost model. In
Sections 4 and 5, we develop and analyze our new algorithms.
We conclude with a comparison of our algorithms with store-
and-forward algorithms and with our lower bounds.

2 MODELS OF COMMUNICATION

In a p x 9 2-dimensional torus network, each node has a
label (i, j) and four neighbors (i, j + l), (i, j - l), (i + 1, j) and
(i - 1, j) where the first component of a label is an integer
mod p and the second is an integer mod q. The diameter of

a p x q torus is D = + 3 . We will use the link-bounded 14 1 2 1

[131 (or shouting [15]) model of communication in which a
processor can use all of its communication links simultane-
ously. In contrast, the processor-bounded (or whispering)
model permits the use of only one link at any given time.
We also assume that the communication links are fill-
duplex so that messages can travel in both directions simul-
taneously. Thus, in a 2-dimensional torus network, each
node has four ports for incoming messages and 4 ports for
outgoing messages. We assume that a node can switch
through a message by connecting an input port to an output
port. In a 2-dimensional torus, as many as four messages
can be switched through a node simultaneously.

When store-and-fomard routing is used to send a message
along a path of d links, the message is stored in buffers at in-
termediate nodes on the path. An intermediate node does not
begin to send the message to the next node on the path until it
has received the entire message. Thus, the transmission time
for a message of length L to be sent distance d in the linear cost
model is d(/3 + Lt$ where /3 is the time to initiate a message
transmission and 1 / z is the bandwidth of the communication
links. (We assume that all links have the same bandwidth.)
The total time to complete a broadcast can be reduced by par-
titioning the message into packets and using a pipelining tech-
nique to send the packets consecutively along the communi-
cation links [26], [31], 1161. The time can be further reduced by

distributing the broadcast over several arc-disjoint spanning
trees. Using pipelining and k arc-disjoint spanning trees of
maximum depth h, and choosing the packet size carefully, gives

a propagation time of (dm + ,/my 131. Combining

this result with the four arc-disjoint spanning trees of depth

D + 1 = Le] + IS] + 1 from [221 p e s time (m + ,/m12
to broadcast in a p x 9 torus.

When circuit-switched routing is used, a header containing the
destination address is sent through the network to ''build a
path. At each intermediate node on the path, the input and out-
put ports used by the header are connected. When the destina-
tion node receives the header, it sends an acknowledgment back
to the source node establishing a direct connection between
source and destination. The bytes of the message are then sent in
pipeline fashion. Since the message is switched through inter-
mediate nodes, there is no need to buffer the entire message. The
links of the path can be released as the last byte passes through
each node or by an acknowledgment from the destination node
when the last byte is received. The former case is known as direct
connect 1231. In a wormhole implementation of circuit-switching,
the header establishes a path to the destination in the same way
as in a direct connect implementation, but an acknowledgment
is not sent back to the source node. Instead, the remaining bytes
immediately follow the header in pipeline fashion with the last
byte releasing the switches as it passes through. The Torus
Routing Chip described in [9] uses wormhole routing for point-
to-point (i.e., one-to-one) communications and can be used to
build multidimensional tori [8].

In the linear cost model, when circuit-switched routing is
used, the transmission time for a message of length L to be
sent distance d is a + dS+ Lz, where a i s the time to initiate a
new message transmission, Sis the time to switch an inter-
mediate node, and 1 / z is the bandwidth of the communica-
tion links. In most current machines, message transmissions
are initiated in software and switching is done in hardware,
so Sis usually much smaller than a. Furthermore, a is usu-
ally much larger than z. For example, in the iPSC/860, the
time to transmit L < 100 bytes over a distance d has been
measured to be (65 + 10d + 0. 425L) p 141, [5]. Store-and-
forward routing can be simulated by circuit-switched routing
by restricting d to be 1 for all transmissions, so the store-and-
forward upper bounds stated above are also upper bounds
for circuit-switched systems with /3= a+ S.

There are other factors that affect the transmission time
of a message. One factor is the propagation time for the
header when setting up the path. Depending on the type of
circuit-switching, there can also be propagation times for
acknowledgments sent by the destination node at the
beginning and at the end of a message transmission. A sec-
ond factor is router contention. Since routers can "switch
through several paths by connecting pairs of ports, there
can be contention when these paths are being set up. How-
ever, there is no router contention after the paths have been
established, and no buffering of messages, so the propagation
time of a message from source to destination is not affected
by the number of nodes through which it is switched or the
numbers of other messages that are being switched through
those nodes. We will omit further mention of these factors

248 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 3, MARCH 1996

since their effects are small and we can account for them by
replacing the constants a, S, and z, and the parameter L,
with slightly larger values. Seidel [27] discusses a longer list of
factors that can affect real message passing systems, and con-
cludes from experiments on the Intel Delta that most of them
contribute very little to the overall cost of communication.

In the wormhole routing model, only the total switch-
ing time depends on the distance d , so it is possible that
the last byte of a message has left the originator before the
header reaches the destination. This could happen, for
example, if the message is very short or d is large. This
cannot happen in the direct connect model because the
source and destination nodes are synchronized. The
transmission times for wormhole routing and direct con-
nect routing are similar when messages are long or the
paths are short or both. When messages are short and the
paths are long, the two routing methods behave quite dif-
ferently. However, in this case, the dominant factor is a.
The a factor is proportional to the number of phases, and
this cannot be reduced by using wormhole routing in-
stead of direct connect routing, so the transmission times
will be similar. Since direct connect routing is easier to
analyze than wormhole routing (because the source and
destination nodes are synchronized in direct connect
routing), we will adopt the direct connect model in this
paper. We emphasize, however, that all of our algorithms
can be used without modification with any type of circuit-
switched routing, and that all of the bounds that we de-
rive are valid for any type of circuit-switching.

Two currently available components that can be used
to build torus networks with all of the properties de-
scribed above are the iWarp cell [6] , [7] and the T9000
Transputer 1341. The iWarp cell has four input and four
output ports, each with a 40 Mbyte per second band-
width. The bandwidth from memory to the communica-
tion controller is 160 Mbyte per second and the hardware
supports multiplexing. The T9000 Transputer has a sepa-
rate DMA controller for each input and each output
channel, and four internal busses that provide multiport
access to the on-chip cache.

When any type of circuit-switched routing is used, and
communication patterns are arbitrary, deadlock is possi-
ble. In particular, if several headers are trying to establish
routes and each has constructed a partial route containing
links needed for the other routes, then none of the headers
will reach its destination. Many papers on wormhole
routing are more concerned with deadlock avoidance than
with efficiency [lo], 1201, 1181, 1191. The most common
deadlock avoidance method is the use of virtual channels
which use multiplexing to share physical links. Since our
algorithm uses fixed, predetermined communication pat-
terns, and the paths used during any phase are arc-
disjoint, there is no possibility of deadlock. Since our al-
gorithms are also synchronous, virtual channels offer no
performance advantages that our algorithms can exploit,
so we will ignore virtual channels.

The minimum phase wormhole broadcast algorithm in
[2] shows that broadcasting can be done more efficiently in
a processor-bounded system with circuit-switched rout-
ing than with store-and-forward routing. The tiling algo-

rithm that we present in Section 4 is a minimum phase
circuit-switched broadcast algorithm for link-bounded
systems. A minimum phase circuit-switched broadcast
algorithm for link-bounded systems is also presented in
[25]. However, the model used in [25] is a unit cost model
that ignores 6, L, and z, and the algorithm is nonuniform
in the sense that messages in the same phase can travel
over different numbers of links. In contrast, the algo-
rithm in Section 4 is uniform and simultaneously mini-
mizes the a a n d Gterms.

3 LOWER BOUNDS

The total transmission time for broadcasting in the linear
cost circuit-switched model has three components: the total
start-up time, the total switching time,’ and the total propagation
time. These components are measured in terms of a, S, and z
respectively. We can prove lower bounds on these compo-
nents individually and in combination.

The total start-up time depends on the number of
phases in a broadcast. A phase for a node that is sending a
message starts when the node begins the initiation of the
transmission and ends when the links over which the
message was sent are released. For a node that is receiving
a message, a phase starts when the header reaches the
node and ends when the link on which the message arrived
is released. Notice that the phases of the source and desti-
nation nodes of a message transmission do not start and
end at exactly the same times. Furthermore, our definition
of phase ignores the fact that a node can be sending and
receiving different messages on each of its links and the
starting and ending times for these transmissions can all
be different. Thus, according to our definition, a node in
a 2-dimensional torus could be in as many as eight
different phases simultaneously.

To simplify our lower and upper bound analyses, we
will assume that a node is in at most one phase at any given
time. This assumption restricts the class of broadcast algo-
rithms that we can analyze, but has no effect on the gener-
ality of our lower bounds. Since none of the algorithms de-
scribed in this paper take advantage of the more general
definition of phase, the assumption does not affect any of
our upper bounds. Algorithms based on wormhole routing
can take advantage of the more general definition of phase
to reduce broadcast time, but the lower bounds in this sec-
tion, and the upper bounds derived in later sections are all
still valid for wormhole routing.

The movement of information in a broadcast is partially
ordered because a node cannot send information before it
has received it. Some of our lower bounds are based on
determinations of minimum length critical paths in partial
orders and others are based on analyses of bottlenecks in
networks. None of our arguments rely on the definition of
phase, so none of our lower bounds are affected by the
simplifying assumption.

PROPOSITION 1. In a vertex-transitive graph G with N nodes,
degree A, edge connectivity 1, and diameter D, the minimum
time to bvoadcast a message of length L is

,

max(rlog,+,N]a, D6, , a + D6 + 5).

PETERS AND SYSKA: CIRCUIT-SWITCHED BROADCASTING IN TORUS NETWORKS 249

PROOF. First consider the total start-up time. When a source
node initiates a message transmission, it incurs a cost of
aand can transmit the message to at most A other nodes
without incurring further start-up costs. Each of these A
nodes can begin to forward the message to at most A
more nodes as soon at it receives the header of the mes-
sage from the source node, but each of these "second
generation" transmissions incurs a start-up cost of a
After it has completed its first set of transmissions, the
source node can also start to inform a "second generation"
of A more nodes. These A + 1 "second generation"
transmissions can start at different times, but no "third
generation" node can receive the header of the message
before at least 2 a time units have elapsed. Continuing in
this way, it is easy to see that at most (A + 1) nodes can
have the message after k a time units, and it follows that
the total start-up time is at least r logA+ N 1 a.

The following arguments are simple extensions of
the arguments developed in [16], [31] for store-and-
forward routing in hypercubes.

The lower bound of DSon total switching time is
immediate since the message must travel along a path
of length at least D from the source to at least one
other node, and this path contains at least D switches.

If the edge connectivity of G is A, then there is an
edge cut of size h which separates the source node
from at least one other node. The bandwidth of this
cut is 4, so the minimum propagation time for a mes-
sage of length L through this edge cut is F.

The final term of the lower bound is the minimum
time for the message to reach a node at distance D
from the source. The header of the message cannot
be received by this node in less than a + DS+ z time
units (assuming that the header has unit length).
Since the node can receive information on all A of its
edges simultaneously, it can receive A units of mes-
sage by time a + DS + z and the remaining L - A
units of message require at least z more time. U

COROLLARY 1. In an n x n 2-dimensional torus, the minimum
time to broadcast a message of length L is

k

When the messages are short or when a is much larger
than Sand 5 the minimum time to broadcast in a 2-dimensional
p x q torus approaches r log, p q 1 a.

4 AN OPTIMAL ALGORITHM FOR SHORT MESSAGES

The broadcast algorithm presented in this section can be viewed
as a recursive tiling of a torus. We will take a direct approach to
the development of our algorithm that avoids the sophisticated
machinery that has been developed to study tilings. For an ex-
tensive treatment of tilings in general and tilings of the torus in
particular, the reader is referred to [14], [29], respectively.

Fig. 1 shows two phases of a broadcast algorithm in a
2-dimensional mesh. We assume that the nodes have la-

bels of the form (i, j) . The originator of the broadcast is the
black node in the center of the diagram, and we assume
that it has label (0, 0). In the first phase, the originator
uses the knight's move paths (shown as heavy arrows) to
broadcast the message to the four black nodes which have
labels (1, 2) , (-1, -2), (2, -l), and (-2, 1). Notice that the
four paths are arc disjoint. In the second phase, each black
node (x, y), including (0, 0), sends the message to its four
immediate neighbors (x + 1, y), (x - 1, y), (x , y + l), and
(x, y - 1). The shading in Fig. 1 shows the "informed area"
of the mesh after two phases. It is easy to see that this
shaded area can be cut out and the links wrapped around
from top to bottom and from left to right to form a 5 x 5
torus. The broadcast time is 2 a + 4S+ ~ L z .

Fig. 1. Broadcasting in a mesh.

To reduce the complexity of the figures in this section,
we will use a pictorial representation of broadcast algo-
rithms. Fig. 2 corresponds to the shaded area of Fig. 1.
The originator (0, 0) is at the point in the center of the
black cross. The four nodes with indices (1, 2), (-1, -21,
(2, -l), and (-2, 1) that are informed by the originator
during the first phase are at the centers of the small
white crosses. The knight's move paths used in the first
phase are shown as diagonal lines in Fig. 2 for clarity.
The 20 nodes informed during the second phase are at
the extreme points of the five small white crosses.

We can view the shaded area in Fig. 2 as a 5 x 5 "square"
which we denote S,. The four "corners" of SI are shown as

black circles. The top "edge" of SI consists of nine line
segments which have orientations "right-down-right-up-
right-up-right-down-right" when proceeding from the top
left corner to the top right corner. We will call this edge an
E , edge with the clockwise orientation being understood.

250 IEEE T R A N S A C T I O N S ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, N O 3, MARCH 1996

Fig. 2. A 5 x 5 torus drawn as an SI square. Fig. 3. A Cl cross

Clearly, the other three edges of S, are rotations of E,. An E,
edge has 180 degree rotational symmetry so the E, edges on
the top and bottom of an S, fit perfectly into each other
when wrapped around, as do E , edges on the left and right
sides of an S,. A 5 x 5 torus is obtained by identifying all
four corners of an S, with a single point.

We can build bigger tilings by identlfying the corners of
several S, squares. Fig. 3 shows one possible tiling using five

S, squares. Some of the details of the broadcast algorithm are
omitted from the four outer S, squares to s i m p w the dia-
gram. The tiling in Fig. 3 does not wrap around to form a
torus, but we can view the shaded area as a "cross" in the
same sense that SI is a square. Each corner of the cross is
shown as a black circle and each "edge" of the perimeter of
the cross is an E,. We will denote this cross by C,. We will use
So to denote a simple square that covers an area containing a

single node and CO to denote a simple cross formed from five
Sos (such as the black cross in the middle of Fig. 2 or Fig. 3). A
C1 is formed by arranging five Sls into the same pattern as
the Sos are arranged to form a Co. Similarly, the symmetries
of C,s allow us to form the S2 in Fig. 4 by arranging five Cls
into the same pattern as the Cos are arranged to form an SI in
Fig. 2.

We can view an S, as a square with corners indicated

by the large black circles. Each of the four "edges" of S2
consists of 9 E , edges (delimited by small black circles in
Fig. 4) arranged in the same "right-down-right-up-right-
up-right-down-right" pattern as nine simple edges are
arranged in an E,. It is, therefore, immediate that E2 edges
also have 180 degree rotational symmetry and that a 25 x 25
torus results when all four corners of an S, are identified

Lt

fi-
'L

w
Fig. 4. A 25 x 25 torus drawn as an S, square

tilings, as drawn in Figs 2 and 4, are Koch curves [21].

THEOREM 2. Bvoadcasting in a torus of size N = 5" x 5 , k 2 1, ye-
k

quires timeat most (log, N)" + (m - 1)6 + (log, N) L T .

PROOF Clearly, we can continue the construction described
above to obtain a tiling for a torus of size 5 x 5" for any
k 2 1. Furthermore, all of the data paths in use during
any parhcular phase are arc disjoint. To calculate the
time requlred by this broadcast algorithm, we need to
determine the number of edges on each data path. To
simplify notation in ths proof, we will number the
phases from last to first. During phase 1 (the last phase),

k

with a single point. It is curious that the outlines of our Sk the central node (x, y) of each CO broadcasts to its four

PETERS AND SYSKA: CIRCUIT-SWITCHED BROADCASTING IN TORUS NETWORKS 251

immediate neighbors (x + 1, y), (x - 1, y), (x, y + l), and
(x, y - 1). During phase 2, the central node of the central
CO of each S, broadcasts to the central nodes of the four
other Cos in the same S,. In particular, (x, y) broadcasts to
(x + l ,y+ 2), (x- 1,y - 2), (x + 2,y- l), and (x - 2, y + 1)
(see Fig. 2). In general, in an odd-numbered phase 2i + 1,
the center of the central S, of each C, is broadcasting to

the centers of the four other S,s in the same C,. Since S,s
are 5' x 5' "squares," the centers of two adjacent S,s in a
C, are distance 5' apart (either horizontally or vertically).
Similarly, in an even-numbered phase 2i, the center (x, y)
of the central C, of each SI+, broadcasts to the centers of
the four other C,s in the same SI+, and the data paths to
these centers have 3 . 5' edges. In particular, during
phase j, an informed node (x, y) will broadcast to the
four nodes (x + U], y + vi), (x - ul, y - U?, (x + z;, y - ui), and

(x - vI, y + ui) where

if even and = 2 x 5i-l if even
I 0 if odd 5 q if odd.

Since each informed node broadcasts to four other
nodes during each phase, the number of phases in the
broadcast is log, (52k) = 2k. The total time is therefore

2k E [a + (uj + v j) ~ + LZ]
]=1

k
= 2ka + ax [U2'-, + u2, + v2,-, + v21] + 2kLz

1=1
k

= 2ka + az [4 5'-'] + 2 k ~ ~
1=1

= 2ka + (5 k - 116 + 2kLZ.

0
Theorem 2 establishes that our algorithm is optimal in

terms of both a and 6 for tori for which both dimensions
are the same even power of 5. We can use different tilings
to obtain algorithms for other sizes of tori. These algorithms
are optimal in terms of aand are usually optimal or close to
optimal in terms of 6:

One way to create new tilings is to expand each node of a
torus into a block of nodes. For example, Fig. 5 shows a CO
cross in which each node has been expanded into a 2 x 2
block of nodes. The node in the lower left corner of each
block is the "boss" of the block. We can make an expanded S1

square by combining five of these expanded Cos using the
same pattern as in Fig. 2. To broadcast in this 10 x 10 torus,
first perform a broadcast to the block bosses using the algo-
rithm for an S, square. Since all the message paths are exactly
twice as long as they were in the S1 square, the total switch-
ing time for the two phases of the algorithm is doubled giv-
ing a time of 2a + 86 + 2Lz. In the last phase, each boss
broadcasts within its block. There are several ways to do this.

The most efficient way is for the block boss (i, j) to route the
message directly to (i+ 1, j) , indirectly to (i + 1, j + 1) via (i, j +
l), and indirectly to (i, j + 1) via (i - 1, j) and (i - 1, j + 1). This
adds a + 36 + Lz to the cost. (The other ways to broadcast
within a block either use an extra phase or use virtual chan-
nels.) We can improve on this result by changing the shape of
the blocks for the last phase. The algorithm is the same dur-
ing the first two phases, but during the last phase each repre-
sentative (i, j) broadcasts directly to (i - 1, j) and (i, j + 11, and
to (i + 1, j + 1) via (i + 1, j) . It is clear that these "slanting"
blocks give a valid tiling. The last phase using slanting blocks
adds only a+ 26+ Lzto the cost for a total cost of 3a+ 106+ 3Lz:
The 3a term is optimal, and so is the 106 term since the
diameter of a 10 x 10 torus is 10.

We can also form a 10 x 10 torus by combining four S,
squares as shown in Fig. 6. In effect, we are replacing a sin-
gle s, by a 2 x 2 block of Sls. The bosses of the four S,s are
the nodes at the centers of the white crosses, and the origi-
nator is the boss of the lower left S1. In the first phase, the
originator broadcasts to the three other bosses. Each boss
then starts a normal S, broadcast in its S,. The first phase
requires time a + 106 + Lzand the last two phases require
2a+ 46+ 2Lzfor a total time of 3a+ 146+ 3Lz. Intuitively,
the reason that this method is less efficient than the method
in the preceding paragraph is because the inefficient phase
in which informed nodes inform only three other nodes
occurs between Sls instead of SoS. We can move the ineffi-
cient phase even further out in the recursion for larger tori,
but this will always be worse than doing the block broad-
cast in the last phase.

Fig. 5. An expanded c, cross with each node replaced by a 2x2 block.

Fig. 6. A 10 x 10 torus made from four SI squares.

252 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 3, MARCH 1996

We can generalize our block boss technique by repeating
the expansion of squares into 2 x 2 blocks of squares. For ex-
ample, a second repetition on a 10 x 10 torus gives a 20 x 20
torus. The extreme case of this generalization is to start with an
So square (i.e., a single node) and expand the node into a 2 x 2
block, then expand each node of this block into a 2 x 2 block,
and so on. This will give square tori with dimensions that are
powers of 2. Since each phase of this broadcast algorithm is an
"inefficient" phase in which each informed node informs only
three other nodes, the number of phases is log, N. This
matches the performance of the divide-and-conquer algorithm
that we will present in the next section, but the divide-and-
conquer algorithm will be exponentially faster in terms of Lz.

Our construction methods also work for tori that are not
square. For example, a 5 x 10 torus can be formed by ex-
panding each node of an SI square into a block of two hori-
zontally adjacent nodes. In the first two phases, perform a
broadcast to the left nodes of the blocks, and in the last phase
each informed node broadcasts to its right neighbor. In the
first two phases, the horizontal distances are twice as large as
in an S1 and the vertical distances are the same as in an S1.
The total cost is 3a+ 86+ 3Lz. The 3aterm is optimal and the
86term is close to the lower bound of 76:

We can generalize our constructions to any size of torus by
expanding nodes into blocks of the appropriate dimensions.
We have not conducted a systematic analysis of this generali-
zation, but based on the examples above and others that we
have analyzed, it appears that the broadcast time will be clos-
est to the lower bounds when the torus is close to square and
when the dimensions are close to powers of 5. When the di-
mensions are close to powers of 2, it would be better to use the
divide-and-conquer algorithm in the next section.

5 EFFICIENT ALGQRITHMS FOR LQNG MESSAGES

The tiling algorithm in the previous section is optimal with
respect to aand S, but it is far from the lower bound on the Lz
term. For long messages, store-and-forward routing with
pipelining and disjoint spanning trees can be done in

+ o(L) time so the lower bound on Lz can be matched as-
ymptotically with store-and-forward routing. However, the a
term for any store-and-forward algorithm is exponentially
larger than for the tiling algorithm. In this section we will
combine the pipelining and disjoint spanning trees techniques
with circuit-switched routing to obtain good performance si-
multaneously with respect to all three of a, S, and Lz.

The communication paths used by a broadcast algo-
rithm form a directed spanning tree. For store-and-
forward routing, the arcs of this broadcast tree are single
communication links; for circuit-switched routing, they
are paths. In both cases, the arcs of the broadcast tree
should be arc-disjoint at any given time in the sense that
no link is used by more than one broadcast tree arc at any
given time. (Recall that links can be used simultaneously
in both directions, so two arcs can share a link if their di-
rections are different. Also note that we are not consider-
ing virtual channels or multiplexing of messages.)

In store-and-forward routing, a complete message must
be received by a node before the node can begin to transmit

it to another node. If the message is long, there can be a
long delay between the receipt of the beginning of the mes-
sage and the receipt of the end. Pipelining reduces this de-
lay by partitioning the message into packets and then
sending them one after the other along the same path. A
node can begin to forward a message as soon as it has re-
ceived the first packet instead of waiting for the entire mes-
sage to arrive. Thus, the delay is reduced by overlapping
the phases of a broadcast algorithm. This same technique
can be used with circuit-switched routing as long as the
paths used by overlapping phases are arc-disjoint. Unfor-
tunately, the phases of the tiling algorithm of the previous
section cannot be overlapped. In particular, the originator
broadcasts to a new set of four nodes in each phase, and
each set of four paths uses all four of the originator's out-
going ports. A similar problem occurs at all other nodes
that are not leaves or parents of leaves in the broadcast tree
To take advantage of pipelining, we will use broadcast trees
that have a maximum out-degree of four or less. This will
increase the number of phases by a constant factor over the
minimum-phase tiling algorithm, but the reduction in the
Lzterm will be proportional to log5 N.

The first algorithm of this section is based on the obvious
divide-and-conquer approach of dividing the torus into
four equal-sized parts, broadcasting to the centers of the
parts, and then recursively broadcasting within the parts.
For simplicity of exposition, we will only consider "square"
ton in this section. However, the algorithms in this section
can be easily extended to tori of other sizes.

Assume for the moment that messages are not partitioned
into packets. The broadcast algorithm for a 2k x 2k torus will
have k phases. During phase i, i = 1 . k - 1, each node (x, y)
that received the message during phase i - 1 broadcasts it to
nodes (x + I , y + l) , (x - I , y + l) , (x + I , y - I) , and (x - I , y - l) ,
with 1 = 2"-'. During step k, if all nodes broadcast to their
four immediate neighbors, some nodes will not be informed
at the end of phase k while others will receive the message
from two of their neighbors. At the expense of a small in-
crease in path-length we can reroute redundant transmis-
sions to otherwise uninformed nodes as suggested in Fig. 7.
The center node in Fig. 7 could be informed by any of the
four centers of "crosses". However, some of the paths from
these cross centers to the center node may overlap paths from
previous phases. This situation would prevent pipelining
and must be avoided. Fortunately, it is always possible to
find paths that are arc-disjoint from the paths of all previous
phases. Fig. 8 shows the situation for an 8 x 8 torus. The solid
circles denote nodes that are informed by the end of phase
k - 1 and the open circles are uninformed nodes. It should be
clear from the figure that all paths from the first k - 1 phases
are arc-disjoint. Nodes a, b, c, and d are all possible informers
for node e during phase k and each has two choices of path.
The path that goes left from b and then down uses an arc that
was used during the first phase to broadcast from the origi-
nator, so this path must be avoided. None of the seven other
paths to e uses arcs that are used in any other phase. In gen-
eral, care must be taken when informing nodes like e that are ,
at the corner of a path, but there is always at least one usable
path from each of the four possible informers of such a node

~ -.

PETERS AND SYSKA: CIRCUIT-SWITCHED BROADCASTING IN TORUS NETWORKS 253

Fig. 7. Step kof broadcasting.

o c I o o o c l o o
0

0

0

0

0

0
d c

Fig. 8. Arc-disjoint broadcast paths for an 8 x 8 torus.

Since the broadcast tree described above is arc-disjoint,
we can partition long messages into packets of some size B
and use pipelining to overlap the phases and reduce the
total cost. During the last phase, some of the paths have one
arc and others have two. Otherwise, all paths in the same
phase have the same length. The total number of arcs trav-
ersed by a packet from the originator to a node that is a leaf
of the broadcast tree is therefore either 2k -1 or 2k. The total
cost of a broadcast using packets of size B is:

T (B) = ka + 2kS + kB7
(for the first packet)

+ - - 1 (a + 2k-'6 + B z) b 1
(for the remaining packets)

= (k + + - l)(a + B z) + 2k-'(* + 1)s
The packet length that minimizes T(B) is

and this gives a broadcast time of

T(BOp,) = (d m + f i r - (k - 2)2k-16.

If messages are very short (or LT is much smaller than aand s)
then pipelining does not improve the broadcast time. Thus, for
short messages the broadcast time of this algorithm is
ka + 2k6 = (log, N)a + m6. The aterm is only a small con-

stant factor (= 1.16) larger than the log, N lower bound and
the Sterm essentially matches the lower bound of m - 1. For
long messages, the asymptotic broadcast time is Lz. This is
much better than the (log, N)LT term of the tiling algorithm
but it does not match the lower bound of 9. To reduce the LT
term further, more than one arc-disjoint broadcast tree must be
used. This is not possible with the divide-and-conquer algo-
rithm just described because many of the nodes are using all
four of their outgoing ports. Instead, we will use two arc-
disjoint broadcast trees with maximum out-degree 2. The idea
is to split the message into two parts and simultaneously
broadcast the two parts using the two broadcast trees. This
will halve the Lz term to 9 at the expense of doubling the a
term. We will describe the algorithm for (2k - 1) x (2k - 1) tori.
Extensions to tori of other sizes are not difficult.

Fig. 9 shows a broadcast in a 3 x 3 torus using two arc-
disjoint broadcast trees. The first tree is shown with solid
arcs. The second, shown with broken arcs is obtained from
the first by a 90 degree rotation. These trees are called H-trees
for obvious reasons. The recursive definition of H-trees is
straightforward. To construct an H-tree for a (2k - 1) x (2 - 1)

torus, arrange four copies of an H-tree for the (2k1 - 1) x

(2k1 - 1) torus around a cross formed from a row and col-

umn of length 2 - 1 centered at the origin. Then connect
the centers of the four H-trees with a new "H." Fig. 10
shows an H-tree for a 7 x 7 torus. H-trees are well known in
VLSI design as a method to lay out binary trees with all

k

k

0 0 0 0 0 0 0

Fig. 10. H-tree for a 7 x 7 torus.

(a) Odd phase

Fig. 9. H-trees for a 3 x 3 torus.

(b) Even phase

254

Start-up Time

(log5 N) a Lower
Bounds

Store-and-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 3, MARCH 1996

Switching Propagation
Time Time

f i 6 L 2/4

leaves equidistant from the root [1]. An H-tree tree with 2k-'
levels does not cover ail of the nodes of the torus. However,
every node that is not informed by the H-tree has two in-
formed neighbors, so one more phase is sufficient to com-
plete a broadcast.

Fig. 9 shows the two phases of a broadcast that uses
two H-trees. The message is partitioned into two sub-
messages X and Y. In the first phase (Fig. 9a), the origi-
nator sends X to its vertical neighbors and Y to its hori-
zontal neighbors. In the second phase (Fig. 9b), the origi-
nator does the opposite and the four nodes informed in
the first phase forward the sub-message they received to
their two neighbors in the H-tree. This pattern of com-
munication generalizes easily to a recursive definition of
a broadcast algorithm using two H-trees. During each
phase each node that received a submessage in the pre-
vious phase forwards it to its two neighbors in the H-
tree. During odd phases, X sub-messages are traveling
vertically and Y sub-messages are traveling horizontally.
During even phases, the opposite haprens. The total
number of phases using H-trees for a (2 - 1) x (2k - 1)
torus is 2k - 2. After 2k - 2 phases, every uninformed
node has at least two informed neighbors, each of which
has received both X and Y . During the last phase each
uninformed node receives a submessage from two of its
informed neighbors. One of the informed neighbors
sends X and the other sends Y . Pipelining can be used
with this algorithm by repeating the pattern for each
packet. The originator first simultaneously sends the first
packet of X vertically and the first packet of Y horizon-
tally. The second step is to send the first packet of X
horizontally and the first packet of Y vertically. In the
third step, the originator sends the second packet of X
vertically and the second packet of Y horizontally, and so
on. The total time for this pipelining algorithm with
packets of size B is:

T(B) = (2k - l)a + (2k - 1)6 + (2k - 1)Bz

(for the first packets of X and Y)

(for the remaining packets)

= (2k + & - 2)(a + B T) + (2k-2($ + 3) - 1)6

The packet length that minimizes T(B) is

and this gives a broadcast time of

- [(2k - 5)2k-2 + 116.
For very short messages (when pipelining is not useful)

the broadcast time is

(211 - 1)a + (2 k - 1)6 = (2 log, N + o(1))a + m 6 .

For long messages, the broadcast time is 7. So, by using
two arc-disjoint broadcast trees and pipelining, we have
reduced the Lz term to within a factor of 2 of the lower
bound asymptotically while using a number of phases that
is within a constant factor of the optimum.

6 CONCLUSION
Store-and-forward routing can be simulated by circuit-
switched routing by restricting d to be 1 for all transmissions.
In this case, the p for the simulated store-and-forward algo-
rithm is ,8 = a + S. We will use this value for p in the follow-
ing comparison of our new algorithms and store-and-
forward algorithms. The table below summarizes the best
upper bounds on the a, S, and Lz terms for our three new
algorithms and for store-and-forward broadcasting with
pipelining and arc-disjoint broadcast trees. The table also
contains the lower bounds on these three quantities. We have
stated the a, S, and Lzterms separately in the table below to
facilitate comparisons even though some of the bounds de-
rived in ths paper involve tradeoffs among the three terms.
Strictly speaking, we should be distinguishing between the
asymptotic bounds on Lz for the pipelining algorithms and
the exact bound for the tiling algorithm. Also, all logarithms
have been converted to base 5 to facilitate comparisons, and
ceilings have been removed. Finally, the bounds for some of
the algorithms were only derived for ton of certain sizes, and
we have not shown this in the table. Nevertheless, these mi-
nor inaccuracies do not affect the general conclusions that
can be drawn from the table, and the results are stated pre-
cisely earlier in the paper.

TABLE 1
BOUNDS FOR BROADCASTING '

H-trees

Since VLSI chips are wire-limited, 2-dimensional net-
works with low degree, such as the torus are good candi-
dates for VLSI implementations [8]. With store-and-
forward routing, the communication algorithms for these
topologies require times that are at best proportional to the
diameter of the network. The circuit-switched algorithms in
this paper require exponentially less time when the messages
are short and are more efficient than the best store-and-
forward algorithm for all but extremely long messages. Our
tiling algorithm is the first broadcast algorithm for tori to
achieve the lower bound on the number phases. Our di-
vide-and-conquer and H-trees algorithms are hybrids
which combine circuit-switched routing with the pipelining

PETERS AND SYSKA: CIRCUIT-SWITCHED BROADCASTING IN TORUS NETWORKS 255

and arc-disjoint spanning trees techniques from store-and-
forward routing to achieve close to optimal performance in
terms of phases, intermediate switch settings, and total
transmission time. They are the first algorithms to achieve this
performance in terms of all three parameters simultaneously.

ACKNOWLEDGMENTS

We would like to thank Tom Shermer for suggesting the
presentation of our tiling diagrams, and the referees for
helpful comments.
The work of Joseph Peters was supported by CNRS-
France and the Conseil Regional de Provence Alpes-C6te
d'Azur. The work of Michel Syska was supported by IN-
RI A-France.

REFERENCES

[l]

[2]

H.B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI.
Addison-Wesley, pp. 367-370,1990.
M. Barnett, D.G. Payne, and R. van de Geijn, "Optimal Broad-
casting in Mesh-connected Architectures," Tech. Report, Univ. of
Texas at Austin, 1988.
J.-C. Bermond and P. Fraigniaud, "Communications in Intercon-
nection Networks," Proc. Combinatorial Optimization in Science and
Technology '91,1991.

[4] S. Bokhari, "Communication Overhead on the Intel iPSC-860 hyper-
cube," Tech. Report, ICASE, NASA Langley Research Center, 1990.

[51 R. Boppana and C. Raghavendra, "All-to-all Personalized

[3]

Comm&ication on Circuz-switched Hypercubes," Tech. Rep.,
Dept EE-Systems, USC, Los Angeles, 1990.
S. Borkar, et al., "iWarp: An Integrated Solution to High-speed Par-
allel Computing," Proc. Supercomputing '88, IEEE, pp. 330-339,1988.
S. Borkar et al., "Supporting Systolic and Memory Communication
in iWarp," Tech. Report TR CMU-CS-90-197, School of Computer
Science, Carnegie-Mellon Univ., 1990.
W.J. Dally, "Performance Analysis of k-ary n-cube Interconnection
Networks," I E E E Trans. Computers, vol. 39, no. 6, pp. 775785,1990.
W.J. Dally and C.L. Seitz, "The Torus Routing Chip," J . Distributed
Computing, vol. 1, no. 3, pp. 187-196,1986.
W.J. Dally and C.L. Seitz, "Deadlock-free Message Routing in
Multiprocessor Interconnection Networks," IEEE Trans. Computers,
vol. 3k, no. 5, pp. 547-553,1987.

[l l] J. Dongarra, R. van de Geijn, and R. Whaley, "Two Dimensional
Basic Linear Algebra Communication Subpromams," Proc. Sixth
S I A M Conf. Para'ilel Processing, pp. 347-352, i992.
P. Fraigniaud, "Communications Intensives dans les Architec-
tures a Memoire Distribuee et Algorithmes Paralldes pour la
Recherche de Racines de PolynGmes," PhD thesis, Ecole Normale
Superieure de Lyon, Universite de Lyon I, 1990.
P. Fraigniaud and E. Lazard, "Methods and Problems of Com-
munication in Usual Networks," Discrete Applied Math., vol. , .
53, pp. 79-133,1994,
B. Griinbaum and G.C. SheDhard. Tilinas and I4ztterns. W.H. Freeman, I , "

1987.
S.M. Hedetniemi, S.T. Hedetniemi, and A.L. Liestman, "A survey

1201 D.H. Linder and J.C. Harden, "An Adaptive and Fault Tolerant
Wormhole Routing Strategy for k-ary n-nibes," IEEE Trans. Comput-
ers, vol. 40, no. 1, pp. 2-12,1991.

[21] B.B. Mandelbrot, The Fractal Geometiy of Natuve. San Francisco:
W.H. Freeman, 1982. '

[22] P. Michallon, D. Trystram, and G. Villard, "Optimal Broadcast
Algorithms on the Torus," Tech. Report 872-1-01-92 LMC-IMAG,
GGnoble, France, 1992.

1231 S.F. Nugent, "The iPSC/2 Direct-connect Technology," Proc. Third - .
A C M Cinf. 'Hypercube Concurrent Computers and Ayplications, pp.

[241 W. Oed, "The CRAY Research Massively Parallel Processor System,
CRAY T3D," Cray Research, Munich, 1993.

[251 J-Y.L. Park, S-K. Lee, and H-A. Choi, "New Algorithms for
Broadcasting in Meshes," Tech. Report GWU-IIST-93-03, George
Washington Univ., 1993.

[26] Y. Saad and M.H. Schultz, "Data Communication in Parallel
Architectures," Parallel Computing, vol. 11, pp. 131-150,1989.

[27] S.R. Seidel, "Broadcasting on Linear Arrays and Meshes," Tech.
Report ORNL/TM-12356, Oak Ridge National Laboratory, 1993.

[28] C.L. Seitz, "Concurrent Architectures," VLSI and Parallel Computation,
R. Suaya and G. Birtwist, eds., Morgan Kaufmann, pp. 1-&1,1990.

[29] M. Senechal, "Tiling the torus," Discr. and Comp. Geometiy, vol. 3,

1301 T. Shimizu, T. Horie, and H. Ishihata, "Low-Latency Message
Comm. Support for the AP1000," Proc. 19th Int'l. Symp. Computer
Architecture, A C M , pp. 288-297,1988.

[31] Q.F. Stout and B. Wagar, "Intensive Hypercube Communication,
Prearranged Communication in Link-bound Machines," J. Parallel
and Distributed Computing, vol. 10, pp. 167-181,1990.

51-60,1988,

pp. 55-72,1988.

1321 nCUBE 6400 Processor Manual, nCUBE Company, 1990.
[33] Paragon X P / S Product Ovewiew, Intel Corporation, 1991.
[34] The T9000 Transputer Products Overview Manual , f irs t edition,

INMOS, 1991.

Joseph G. Peters received the BS degree in
mathematics from the University of Waterloo, and
the MSc and PhD degrees in computer science
from the University of Toronto. He is an associate
professor of computing science at Simon Fraser
University. Dr. Peters' current research interests
include network communications, algorithmic graph
theoty, and parallel computing.

Michel Syska received the PhD degree in computer
science from the University of Nice-Sophia
Antipolis, France, in 1992. He is a Maitre de Con-
ferences of Computing Science at the University of
Nice-Sophia Antipolis, and is a member of the
13s laboratory. His current research interests
include network communications, optical intercon-
nections, and mapping problems in distributed
systems. Dr. Syska is a member of RUMEUR.

of Gossiping and Broadcasting in Communication Networks,"
Networks, vol. 18, pp. 319-349,1986.

[16] S.L. Johnson and C.T. Ho, "Optimum Broadcasting and
Personalized Communication in Hypercubes," I E E E Trans.
Computers, vol. 38,no. 9, pp. 1,249-1,268,1989.

[17] P. Kermani and L. Kleinrock, "Virtual Cut-through a New Computer
Communication Switching Technique," Computer Networks, vol 3,
pp. 267-286,1979.

[181 X. Lin, P.K. McKinley, and L.M. Ni, "Performance Evaluation of
Multicast Wormhole Routing in 2D-Mesh Multicomputers," Proc.
1991 Int'l Conf. Parallel Processing, pp. I-435-I-442,1991.

1191 X. Lin and L.M. Ni, "Deadlock-free Multicast Wormhole Routing
in Multicomputer Networks," Proc. 18th Int'l Symp. Computer
Architecture, pp. 116-125,1991.

