
Routing Techniques in
Direct Networks

Lionel M. Ni and Philip K. McKinley
Michigan State University

Efficient routing of
messages is critical to

the performance of
direct network systems.
The popular wormhole
routing technique faces
several challenges -

particularly flow
control and deadlock

avoidance.

assively parallel computers with thousands of processors are considered
the most promising technology to achieve teraflops computational
power. Such large-scale multiprocessors are usually organized as en-

sembles of nodes, where each node has its own processor, local memory, and other
supporting devices. These nodes may have different functional capabilities. For
example, the set of nodes may include vector processors, graphics processors, I/O
processors, and symbolic processors.

The way the nodes are connected to one another varies among machines. In a
direct network architecture, each node has a point-to-point, or direct, connection
to some number of other nodes, called neighboring nodes. Direct networks have
become a popular architecture for constructing massively parallel computers
because they scale well; that is, as the number of nodes in the system increases, the
total communication bandwidth, memory bandwidth, and processing capability of
the system also increase. Figure 1 shows a generic multiprocessor with a set of
nodes interconnected through a direct network.

Because they do not physically share memory, nodes must communicate by
passing messages through the network. Message size may vary, depending on the
application. For efficient and fair use of network resources, a message is often
divided into packets prior to transmission. A packet is the smallest unit of
communication that contains routing and sequencing information; this informa-
tion is carried in the packet header. Neighboring nodes may send packets to one
another directly, while nodes that are not directly connected must rely on other
nodes in the network to relay packets from source to destination. In many systems,
each node contains a separate router to handle such communication-related tasks.
Although a router’s function could be performed by the corresponding local
processor, dedicated routers are used to allow overlapped computation and
communication within each node,

Figure 2 shows the architecture of a generic node. Each router supports some
number of input and output channels. Normally, every input channel is paired with
a corresponding output channel. Internal channels connect the local processor/
memory to the router. Although it is common to provide only one pair of internal
channels, some systems use more internal channels to avoid a communication
bottleneck between the local processor/memory and the router. External channels
are used for communication between routers and, therefore, between nodes. In

62 00 18-9 162/93/0200-0062$03.00 0 1993 IEEE COMPUTER

this article, unless otherwise specified,
the term channel will refer to an exter-
nal channel. By connecting the input
channels of one node to the output chan-
nels of other nodes, the topology of the
direct network is defined. A packet sent
between two nodes that are not neigh-
boring must be forwarded by routers
along multiple external channels. Usu-
ally, a crossbar is used to allow all pos-
sible connections between the input and
output channels within the router. The
sequential list of channels traversed by
such a packet is called a path, and the
number of channels in the path is called
the path length.

The programmer of a multiprocessor
based on a direct network can invoke
various system primitives to send mes-
sages between processes executing on
different nodes. Writing such a mes-
sage-passing program has been tradi-
tionally difficult and error prone. Sys-
tems used in this manner have been
referred to as message-passing multi-
computers.' Recently, an alternative
approach has been pursued, whereby a
sophisticated compiler generates data-
movement operations from shared-
memory parallel programs. For a user,
the shared-memory programming par-
adigm is usually simpler and more intu-
itive than dealing with the low-level
details of message passing. Systems used
in this manner have been referred to as
scalable shared-memory multiproces-

Whether a direct network system is
used to support a message-passing or a
shared-memory programming paradigm,
the time required to move data between
nodes is critical to system performance,
as it effectively determines what granu-
larity levels of parallelism are possible
in executing an application program. A
metric commonly used to evaluate a
direct network system is communica-
tion latency, which is the sum of three
values: start-up latency, network laten-
cy, and blocking time.

Start-up latency is the time required
for the system to handle the packet at
both the source and destination nodes.
Its value depends mainly on the design
of system software and the interface
between local processors and routers.
Start-up latency can be further decom-
posed into sending latency and receiv-
ing latency - the start-up latencies in-
curred at the sending node and the
receiving node, respectively. The net-
work latency equals the elapsed time

Direct network

Figure 1. A generic multiprocessor based on a direct network.

I I

Figure 2. A generic node architecture.

after the head of a packet has entered
the network at the source until the tail
of the packet emerges from the network
at the destination. Start-up latency and
network latency are static for a given
system; that is, the sum of their values
reflects the latency of packets sent in
the absence of other network traffic and
transient system activities.

The blocking time includes all possi-
ble delays encountered during the life-
time of a packet. These delays are due
mainly to conflicts over the use of shared
resources, for example, delays due to
channel contention, in which two pack-
ets simultaneously require the same
channel. Blocking time reflects the dy-
namic behavior of the network result-
ing from the passing of multiple pack-
ets; it may be high if the network traffic
is heavy or unevenly distributed.

The communication latency of a di-
rect network depends on several archi-
tectural characteristics; one of the most

important is the type of switching tech-
nology used by routers to transfer data
frominput channels to output channels.
A variety of switching techniques have
been used in direct networks. One meth-
od, called wormhole r o ~ t i n g , ~ has be-
come quite popular in recent years. This
article surveys the research contribu-
tions and commercial ventures related
to wormhole routing. We review the
properties of direct networks, then de-
scribe in detail the operation and char-
acteristics of wormhole routing. By its
nature, wormhole routing is particular-
ly susceptible to deadlock situations, in
which two or more packets may block
one another indefinitely. Deadlock
avoidance is usually guaranteed by the
routing algorithm, which selects the path
a packet takes. We describe several ap-
proaches to deadlock-free routing, along
with a technique that allows multiple
virtual channels to share the same phys-
ical channel. In addition, we discuss sev-

February 1993 63

era1 open issues related to wormhole
routing.

Characteristics of
direct networks

The average communication latency
in a direct network depends on several
network properties. A direct network is
characterized by four factors: topology,
routing, flow control, and switching.

Topology.The topology of a network,
usually modeled as a graph, defines how
the nodes are interconnected by chan-
nels. If every node is connected directly
to every other node, the network topol-
ogy is fully connected, or complete.
Although complete topologies obviate
forwarding of packets by intermediate
nodes, they are practical only for very
small networks because the number of
physical connections per node is limited
by rigid constraints, such as the number
of available pins and pads on the router
and the amount of VLSI area available
for communication-related hardware.
These engineering and scaling difficul-
ties preclude networks with large com-
plete topologies.

Therefore, many direct networks use
a fixed, multiple-hop topology, such as a
hypercube or two-dimensional mesh,
each of which is a special case of k-aryn-
cubes or n-dimensional meshes. (See
the “Direct network topologies” side-
bar for detailed definitions.) In multi-
ple-hop topologies, packets may tra-
verse one or more intermediate nodes
before reaching the destination. Some
computers provide basic cells that can
be configured as different topologies,
depending on the application. For ex-
ample, if each router has one input chan-
nel and one output channel, the only
feasible interconnection topology is a
unidirectional ring. If each router has
two input channels and two output chan-
nels, possible interconnection topolo-
gies include a bidirectional linear array
and a bidirectional ring. With enough
input and output channels, direct net-
works of arbitrary size and topology can
be constructed.

Two conflicting requirements of a
direct network are that it must accom-
modate a large number of nodes and
exhibit a low network latency. As the
number of nodes increases, the number
of wires needed to interconnect them

also increases. The complexity of the
connection is said to be wire limited: the
more edges in a topology, the more
difficult that topology is to fabricate in
a limited area.

Several parameters are used to study
this problem. The bisection width of a
topology is the minimum number of
channels that must be removed, or cut,
to partition the network into two sub-
networks, each containing half the nodes
in the network. The channel width is the
number of bits that can be transmitted
simultaneously on a physical channel
between two adjacent nodes, and the
channel rate is the peak rate at which
bits can be transferred over each indi-
vidual line of a physical channel. The
channel bandwidth, which is the prod-
uct of the channel width and the chan-
nel rate, determines the communica-
tion performance of a direct network.
Bisection density, the product of bisec-
tion width and the channel width, can
be used as a measure of network cost.
For a given bisection density, a large
bisection width dictates a small channel
width.

For a given number of network nodes,
low-dimensional mesh networks have
much lower bisection widths than, say,
hypercubes; consequently, they can of-
fer wider channels and a higher channel
bandwidth for a given bisection density
(see “Direct network topologies” side-
bar for details). A disadvantage of low-
dimensional networks is that the aver-
age distance between nodes is relatively
large. For systems in which the network
latency depends on the path length, the
hypercube is a popular choice of topol-
ogy because of its relatively small inter-
node distance. However, in other sys-
tems, such as those that support
wormhole routing, the network latency
is almost independent of the path length
when there is no contention and the
packet length is relatively large. Low-
dimensional meshes are popular topol-
ogies for such systems because the neg-
ative effects of their large internode
distance are minimized.

Routing. A direct network topology
must allow every node to send packets
to every other node. In the absence of a
complete topology, routing determines
the path selected by a packet to reach its
destination. Efficient routing is critical
to the performance of direct networks.

Routing can be classified in several
ways. In source routing, the source node

selects the entire path before sending
the packet. Each packet must carry this
routing information, increasing the pack-
et size. Furthermore, the path cannot be
changed after the packet has left the
source. Most direct network systems
use distributed routing. In this approach,
each router, upon receiving the packet,
decides whether it should be delivered
to the local processor or forwarded to a
neighboring router. In the latter case,
the routing algorithm is invoked to de-
termine which neighbor should be sent
the packet. In a practical router design,
the routing decision process must be as
fast as possible to reduce the network
latency. A good routing algorithm should
also be easily implemented in hardware.
Furthermore, the decision process usu-
ally does not require global state infor-
mation of the network. Providing such
information to each router creates ad-
ditional traffic and requires additional
storage space in each router.

Routing can also be classified as de-
terministic or adaptive. In determinis-
tic routing, the path is completely deter-
mined by the source and destination
addresses. This method is also referred
to as oblivious routing. A routing tech-
nique is adaptive if, for a given source
and destination, the path taken by a
particular packet depends on dynamic
network conditions, such as the pres-
ence of faulty or congested channels.

A routing algorithm is said to be min-
imal if the path selected is one of the
shortest paths between the source and
destination pair. Using a minimal rout-
ing algorithm, every channel visited will
bring the packet closer to the destina-
tion. A nonminimal routing algorithm
allows packets to follow a longer path,
usually in response to current network
conditions. If nonminimal routing is
used, care must be taken to avoid a
situation in which the packet will con-
tinue to be routed through the network
but never reach the destination.

Flow control. A network consists of
many channels and buffers. Flow con-
trol deals with the allocation of chan-
nels and buffers to a packet as it travels
along a path through the network. A
resource collision occurs when a packet
cannot proceed because some resource
that it requires is held by another pack-
et. Whether the packet is dropped,
blocked in place, buffered, or rerouted
through another channel depends on
the flow control policy. A good flow

February 1993 65

control policy should avoid channel con-
gestion while reducing the network la-
tency.

The allocation of channels and their
associated buffers to packets can be
viewed from two perspectives. The rout-
ing algorithm determines which output

channel is selected for a packet arriv-
ing on a given input channel. There-
fore, routing can be referred to as the
output selection pol icy . Since an outgo-
ing channel can be requested by pack-
ets arriving on many different input
channels, an input selection policy is

needed to determine which packet may
use the output channel. Possible input
selection policies include round robin,
fixed channel priority, and first come,
first served. The input selection policy
affects the fairness of routing algo-
rithms.

Switching techniques

Early direct networks used store-and-forward switching
borrowed from the computer network community. In this ap-
proach, when a packet reaches an intermediate node, the
entire packet is stored in a packet buffer. The packet is
then forwarded to a selected neighboring node when the
next output channel is available and the neighboring node
has an available buffer. This switching strategy was adopt-
ed in the research prototype Cosmic Cube and several
first-generation commercial multicomputers, including the
iPSC-1, Ncube 1, Ametek 14, and FPS T-series. Store-
and-forward switching is simple, but it has two major draw-
backs. First, each node must buffer every incoming packet,
consuming memory space. Second, the network latency is
proportional to the distance between the source and desti-
nation nodes. The network latency is (L/B) 0, where L is the
packet length, B is the channel bandwidth, and D is the
length of the path between the source and destination
nodes.

Kermani and Kleinrock introduced the virtu
method for computer communication netwo

To decrease the amount of time spent transmitting data,

distance D will

establishment phase. I
packet is transmitted
During this phase, th
reserved exclusively
for buffers at the inte
tion phase, the circui

where L, is the length of the control pack
establish the circuit. If L, cc L, the distan
ble effect on the network I
tablished because a des

formance study of different circuit switching techniques2
Wormhole routing also uses a cut-through approach to

switching. A packet is divided into a number of f/i& (flow
) for transmission. The header flit (or flits) gov-
e. As the header advances along the specified

aining flits follow in a pipeline fashion. If the
header flit encounters a channel already in use, it is
blocked until the channel becomes available. Rather than
buffering the remaining flits by removing them from the net-
work channels, as in virtual cut-through, the flow control
within the network blocks the trailing flits and they remain in
flit buffers along the established route. The network latency
for wormhole routing is (L,/B)D + L/B, where L,is the length
of each flit, 6 is the channel bandwidth, D is the path
length, and L is the length of the message. If L,c< L, the
path length D will not significantly affect the network latency
unless it is very large.

Both computer networks and direct networks can imple-
ment and share the above switching techniques. Since cut-

s not have to buffer the entire packet
the next node, the data-link-level
This is good for direct networks, as

ty and overhead are further reduced.
the high transmission error rate in

computer networks, eliminating the data-link-level protocol
wilt delay the detection of a transmission error. The error
will be detected by an end-to-end acknowledgment provid-

e transport layer. This is the main reason that cut-
switching IS not normally used in computer net-

works.

hole routing with that of storeand-forward switching and
Figure B compares the communication latency of worm-

I

f each node over time
a source node S to the
ntermediate nodes, /I, E ,
er the packet between
r, and between the last
or, is ignored. Unlike

store-and-forward switching, both circuit switching and

Switching. While the input and out-
put selection policies determine how a
packet uses channels as it traverses an
intermediate router, switching is the
actual mechanism that removes data
from an input channel and places it on
an output channel. Network latency is

I1

wormhole routing have communication
latencies that are nearly independent of
the distance between the source and
destination nodes.

This characteristic is confirmed by
measurements on actual machines.
Figure C plots the communication la-
tency versus path length for a 1-Kbyte
packet transmitted using three switch-
ing techniques: store-and-forward
switching (on a 64-node Ncube-1 at
Michigan State University), circuit
switching (on a 32-node iPSC/2 at the
University of Missouri-Rolla), and
wormhole routing (on a 64-node
Ncube-2 at Purdue University). The la-
tencies of both circuit switching and
wormhole routing demonstrate virtually
no sensitivity to distance. In these mea-
surements, the traffic is generated such
that there is no channel contention.
Thus, the communication latency does
not include the blocking time.

The first commercial multiprocessor
to adopt wormhole routing was the
Ametek 2010, which used a 2D mesh
topology. This machine was renamed
Symult 201 0 and ceased production in
1990. The Ncube-2, announced in
1989, also uses wormhole routing in a
hypercube. Intel/DARPAs Touchstone
Delta, delivered in 1991, uses worm-
hole routing based on a 2D mesh, as
does the Intel Paragon, announced in
1991. The research prototype J-ma-
chine, built at the Massachusetts Insti-
tute of Technology in 1991, uses worm-
hole routing in a 3D mesh. Both Intel/
CMU’s iWarp and the Transputer IMS
T9000 family use wormhole routing in
their basic building-block nodes. Addi-
tional material and complete references
for these machines are available in the
l i terat~re.~

Packet S I
Legend: 7 1

Header Data 1

Node

S-J -
I’ U I’

cl- l 2

l3 - Time l3

S ’ I I I 1 I I I]

i .nnnm
umnn

Time
4

I2l

13 I
I - Time

7.0

5.0
Comm. 4.5
latency 4.0

64-node Ncube-1 (store-and-forward)

Message size: 1 Kbyte

32-node iPSC-2 (circuit switching)
1 .o
0.5 64-node Ncube-2 (wormhole routing)
0.0

1 2 3 4 5 6

Distance (number of hops)

Figure C. Communication latency in milliseconds versus distance for
transmitting a 1 WKbyte message.

References
1 S.A. Felperin et al., “Routing Techniques for Massively Parallel

503.

2. D.C. Grunwald and D.A. Reed, “Networks for Parallel Processors:
Measurements and Prognostications,” Proc. Thtrd Conf Hypercube

Concurrent Computers and Applications, Vol. 1, ACM, New York, Jan.
Communication,” Proc. E€€, Vol. 79, No. 4, Apr. 1991, pp. 488- 1988, pp. 610-619.

3. L.M. Ni and P.
hole Networks,“
Science, Michig

Processors Source Destination

Routers

Figure 3. Wormhole routing.

highly dependent on the switching tech-
nique used. Four switching techniques
have been adopted in direct networks:
store-and-forward, circuit switching,
virtual cut-through, and wormhole rout-
ing (see “Switching techniques” sidebar
on pages 66-67). In store-and-forward
switching, also called packet switching,
when a packet reaches an intermediate
node, the entire packet is stored in a
packet buffer. The packet is then for-
warded to a selected neighboring node
when the next channel is available and
the neighboring node has an available
packet buffer. In circuit switching, a
physical circuit is constructed between
the source and destination nodes. After
the packet has been transmitted along
the circuit to the destination, the circuit
is torn down. In virtual cut-through, the
packet header is examined upon arrival
at an intermediate node. The packet is
stored at the intermediate node only if
the next required channel is busy; oth-

Figure 4. Hand-
shaking between

two routers
through a re-

questlackuowl-
edge line: (a) B

is ready to ac-
cept a flit by set-
ting R/A to low;

(b) A is ready
to send flit i by
raising lUA to

high; (c) flit i is
latched in B’s

flit buffer; (d) B
sets WA to low
when flit i is re-
moved (also, A

has received
flit i + 1).

erwise, it is forwarded immediately with-
out buffering.

Circuit switching and virtual cut-
through are both based on the concept
of cut-through, which can significantly
reduce the network latency. Specifi-
cally, the delay introduced by each in-
termediate router is small. If the start-
up latency (about 385 microseconds in
Ncube-1 and 150 microseconds in
Ncube-2) is very large relative to the
delay at each router, the network laten-
cy contributes little to the communica-
tion latency unless the path is very long.
However, as network traffic increases,
the blocking time, which is a function
of the path length, may become sig-
nificant.

Wormhole routing

Although both virtual cut-through and
circuit switching offer low network la-

tencies that are relatively independent
of path length, virtual cut-through re-
quires that blocked packets be buff-
ered, and circuit switching makes it dif-
ficult to support sharing of channels
among packets. Wormhole routing, pro-
posed by Dally and Seitz; was designed
to overcome these difficulties while of-
fering similar network latency.

Wormhole routing also uses a cut-
through approach to switching. A pack-
et is divided into a number offlits (flow
control digits) for transmission. The size
of a flit depends on system parameters,
in particular the channel width. Nor-
mally, the bits constituting a flit are
transmittedin parallel between two rout-
ers. The header flit (or flits) of a packet
governs the route. As the header ad-
vances along the specified route, the
remaining flits follow in a pipeline fash-
ion, as shown in Figure 3. If the header
flit encounters a channel already in use.
it is blocked until the channel becomes
available. Rather than buffering the
remaining flits by removing them from
the network channels, as in virtual cut-
through, the flow control within the
network blocks the trailing flits and they
remain in flit buffers along the estab-
lished route. Once a channel has been
acquired by a packet, it is reserved for
the packet. The channelisreleasedwhen
the last, or tail, flit has been transmitted
on the channel.

The pipelined nature of wormhole
routing produces two positive effects.
First, the absence of network conten-

A B

U
Flit i

A B

0
Flit i

68 COMPUTER

tion makes the network latency rela-
tively insensitive to path length. Sec-
ond, large packet buffers at each inter-
mediate node are obviated; only a small
FIFO (first in, first out) flit buffer is
required. In some wormhole-routed sys-
tems, such as the Ncube-2 and
Symult 2010, the flit buffer can hold
only one flit. Other systems, such as
the J-machine, a fine-grained system
built at the Massachusetts Institute of
Technology, have demonstrated im-
proved network performance by using
larger flit buffers. In the extreme, when
the flit buffers are as large as the pack-
ets themselves, the behavior of worm-
hole routing resembles that of virtual
cut-through.

If a large-scale wormhole-routed net-
work is to be constructed, the effects of
propagation delay make it difficult to
distribute a high-speed synchronous
clock to all nodes over a physically large
area. Therefore, a popular approach has
been self-timed circuit d e ~ i g n , ~ in which
flits passing between two adjacent nodes
must use a handshaking protocol. In the
example in Figure 4, a unidirectional
channel from router A connects to rout-
er B. A single-wire request/acknowl-
edge (R/A) line is associated with the
channel. The R/A line can be raised
only by router A , the requesting side,
and lowered only by router B, the ac-
knowledging side. When A is ready to
send a flit to B, A must wait until the R/
A line is low. A then places the data on
the data channel and raises the R/A line
to high. Router B will lower the RIA
line when it has removed the flit from
the flit buffer (or, in the case of large flit
buffers, if there is an empty flit slot in
the buffer).

The way wormhole-routed packets
acquire and use channels leads to other
advantages over circuit switching. In
circuit switching, once a channel is as-
signed to a packet, it cannot be used by
other packets until the channel is re-
leased. In contrast, wormhole routing
allows a channel to be shared by many
packets. We discuss this virtual channel
concept later. Furthermore, wormhole
routing allows packet replication, in
which copies of a flit can be sent on
multiple output channels. Packet repli-
cation is useful in supporting broadcast
and multicast comm~nicat ion.~ By its
nature, circuit switching does not per-
mit packet replication.

Wormhole routing has been a popu-
lar switching technique in new-genera-

February 1993

‘-r Packet 2

c] Flit buffer

1 Inty&selection

__I__)
Packet progression

t __.__.._..__._..
Packet awaiting

resource

Figure 5. An example of channel deadlock involving four packets.

tion direct networks. The first commer-
cial multicomputer to adopt wormhole
routing was the Ametek 2010, which
used a 2D mesh topology. (This ma-
chine was later renamed the Symult
2010.) The Ncube-2, which uses a hy-
percube topology, has also adopted
wormhole routing. The IntelTouchstone
Delta and Intel Paragon use wormhole
routing in a 2D mesh. Finally, MIT’s
research prototype J-machine uses
wormhole routing in a 3D mesh.

Deadlock
Switching strategy and the routing

algorithm used are among several fac-
tors that affect communication latency.
One situation that can postpone packet
deliveryindefinitely is deadlock, inwhich
a set of packets may become blocked
forever in the network. Deadlock can
occur if packets are allowed to hold
some resources while requesting oth-
ers. In store-and-forward and virtual
cut-through switching, the resources are
buffers. In circuit switching and worm-
hole routing, the resources are chan-
nels. Because blocked packets holding
channels (and their corresponding flit
buffers) remain in the network, worm-
hole routing is particularly susceptible
to deadlock. Figure 5 shows an example
of channel deadlock involving four rout-

ers and four packets. Each packet is
holding a flit buffer while requesting
the flit buffer being held by another
packet.

One way to solve the deadlock prob-
lem is to allow the preemption of pack-
ets involved in a potential deadlock
situation. Preempted packets can be
either rerouted or discarded. The former
policy gives rise to adaptive nonmini-
mal routing techniques. The latter pol-
icy requires that the packets be recov-
ered at the source and retransmitted.
Because of requirements for low laten-
cy and reliability, packet preemption is
not used in most direct network archi-
tectures.

More commonly, deadlock is avoid-
ed by the routing algorithm. By order-
ing network resources and requiring
that packets request and use these re-
sources in strictly monotonic order, cir-
cular wait - a necessary condition for
deadlock - is avoided. Hence, dead-
lock involving these resources cannot
arise.

In wormhole-routed networks, chan-
nels are the critical resources. A chan-
nel dependence graph6 can be used to
develop a deadlock-free routing algo-
rithm. The channel dependence graph
for a direct network and a routing algo-
rithm is a directed graph D = G(C, E) ,
where the vertex set C(D) consists of
all the unidirectional channels in the

69

r0-S-O @ 1
Figure 6. A four-node network and the corresponding channel dependence
graphs: (a) a direct network with four nodes; (b) channel dependence graph;
(c) channel dependence graph based on restricted minimal routing.

network, and the edge set E (D) includes
all the pairs of connected channels, as
defined by the routing algorithm. In
other words, if (cl , c,) E E (D) , then c,
and c, are, respectively, an input chan-
nel and an output channel of a node,
and the routing algorithm may route
packets from c, to c,. A routing algo-
rithm for a direct network is deadlock-
free if and only if there is no cycle in the
channel dependence graph.6

Figure 6 demonstrates the channel
dependence graph method. The four
nodes shown in Figure 6a can be consid-
ered as a ring, a 2 x 2 mesh, a 2-cube, a

4-ary 1-cube, or a 2 x 2 torus. Assuming
a packet can be delivered through any
minimal routing path, the correspond-
ing channel dependence graph is shown
in Figure 6b. Since there are two cycles
in the channel dependence graph, dead-
lock is possible. One way to avoid dead-
lock is to disallow packets to be for-
warded from channel c, to c2 and from c,
to c8. The resulting channel dependence
graph is shown in Figure 6c. It can be
easily verified that the routing is still
minimal. However, to send a packet
from node 0 to node 2, the packet must
be forwarded through node 3, as the

path through node 1 is no longer per-
mitted.

Deterministic routing
One approach to designing a dead-

lock-free routing algorithm for a worm-
hole-routed network is to ensure that
cycles are avoided in the channel de-
pendence graph. This can be achieved
by assigning each channel a unique num-
ber and allocating channels to packets
in strictly ascending (or descending)
order. If the behavior of the algorithm
is independent of current network con-
ditions, it is deterministic.

Dimension-ordered routing. A chan-
nel numbering scheme often used in
n-dimensional meshes is based on the
dimension of channels. In dimension-
ordered routing, each packet is routed
in one dimension at a time, arriving at
the proper coordinate in each dimen-
sion before proceeding to the next di-
mension. By enforcing a strictly mono-
tonic order on the dimensions traversed,
deadlock-free routing is guaranteed.
Hypercube and2D mesh topologies each
use a deadlock-free minimal determin-
istic routing algorithm. Both algorithms
are based on the concept of dimension
ordering.

In an n-cube, each node is represent-
ed using an n-bit binary number. Each
node has n outgoing channels, and the
ith channel corresponds to the ith di-
mension. In the E-cube routing algo-
rithm, the packet header carries the
destination node address d. When a node
v in the n-cube receives a packet, the E-
cube routing algorithm computes c = d

c5

I

I 1

I

Figure 7. A five-node ring topology and channel dependence graphs: (a) 5-ary 1-cube (ring); (b) channel dependence
graph; (c) channel dependence graph for deadlock-free nonminimal deterministic routing.

COMPUTER 70

69 v, where 0 is the exclusive-OR oper-
ation. If c = 0, the packet is forwarded to
the local processor. Otherwise, thepack-
et is forwarded on the outgoing channel
in the kth dimension, where k is the
position of the rightmost (alternatively,
leftmost) 1 in c.

In a 2D mesh, each node is represent-
ed by its position (x, y) in the mesh. In
the XY routing algorithm, packets are
sent first along the X dimension and
then along the Y dimension. In other
words, at most one turn is allowed, and
that turn must be from thexdimension
to the Y dimension. Let (sx, s,) and (dx,
d,) denote the addresses of a source and
destination node, respectively. Further-
more, let (gx, g,) = (d, - s,, d, - s,). XY
routing can be implemented by placing
g, and gy in the first two flits, respective-
ly, of the packet. When the first flit of a
packet arrives at a router, it is decre-
mented or incremented, depending on
whether it is greater than 0 or less than
0. If the result is not equal to 0, the
packet is forwarded in the same dimen-
sion and direction it arrived in. If the
result equals 0 and the packet arrived
on the Y dimension, the packet is deliv-
ered to the local processor. If the result
equals 0 and the packet arrived on the
X dimension, the flit is discarded and
the next flit is examined upon arrival.
If that flit is 0, the packet is delivered
to the local processor; otherwise, the
packet is forwarded in the Y dimension.
Using this method, the largest possible
2D mesh with an 8-bit flit is 128 x 128.
To construct a larger mesh, either the
flit size must be increased or the flit
buffer must be able to store multiple
flits.

Routing in general k-ary n-cubes. For
k-ary n-cube topologies with k > 4, it is
impossible to construct a deadlock-free
minimal deterministic routing algorithm.
This result is true even when n = 1, as
illustrated by the one-dimensional ring
topology shown in Figure 7a, where k =
5. (The case of k = 4 was demonstrated
in Figure 6, where deterministic mini-
mal routing is possible.) Since only min-
imal routing is allowed, there are two
disjoint channel dependence graphs.
Figure 7b shows one of these; recall that
the vertices represent channels, as la-
beled. To break the cycle, one of the
edges must be deleted. However, in that
case, minimal routing cannot be guar-
anteed. For example, if the edge be-
tween c2 and c3 is deleted, as shown in

Figure 7c, then packets arriving at node
2 on channel c2 cannot depart on chan-
nel c3. Hence, packets sent from node 1
to node 3 must take a nonminimal path.
Thus, a deadlock-free nonminimal de-
terministic routing algorithm is obtained.
By using this technique, deadlock-free
nonminimal deterministic routing algo-
rithms can be developed for general k-
ary n-cube topologies.6

Adaptive routing

The main disadvantage of determin-
istic routing is that it cannot respond to
dynamic network conditions, such as
congestion. An adaptive routing algo-
rithm for a wormhole-routed network,
however, must address the deadlock is-
sue. To do so often requires the use of
additional channels; in particular, some
adjacent nodes must be connected by
multiple pairs of opposite unidirection-
al channels. These pairs of channels may
share one or more physical channels.
The concept of virtual channels will be
discussed later. To simplify the discus-
sion, we will not distinguish between
physical and virtual channels in this sec-
tion.

Minimal adaptive routing. One gen-
eral adaptive routing technique works
by partitioning the channels into dis-
joint subsets. Each subset constitutes a
corresponding subnetwork. Packets are
routed through different subnetworks,
depending on the location of destina-
tion nodes.

Figure 8 illustrates the application of
this method to a 2D mesh. As Figure 8a
shows, the mesh contains an additional

pair of channels added to the Y dimen-
sion. The network can be partitioned
into two subnetworks called the +Xsub-
network and the -X subnetwork, each
having a pair of channels in the Y di-
mension and a unidirectional channel
in the X dimension. The +X subnet-
work is shown in Figure 8b. If the desti-
nation node is to the right of the source,
that is, if d, > s,, the packet will be
routed through the +X subnetwork. If
d, i s,, the -X subnetwork is used. If d,
= s,, the packet can be routed using
either subnetwork.

This double Y-channel routing algo-
rithm is minimal and fully adaptive; that
is, a packet can be delivered through
any of the shortest paths. The algorithm
can be proved to be deadlock-free by
ordering the channels appr~priately.~
Such an ordering of the channels in the
+X subnetwork is shown in Figure 8b.
For any pair of source and destination
nodes, the channels will be traversed in
descending order, no matter which short-
est paths are taken. Hence, deadlock
cannot occur. In Figure 8b, for example,
any of the minimal paths from node
(1,O) to node (2,2) - specifically, (25,
24,18), (25,17, 14), and (16, 15,14) -
are valid.

Providing deadlock-free minimal ful-
ly adaptive routing algorithms for the
hypercube, 2D torus, or more general
k-ary n-cube topologies may require ad-
ditional channels. Linder and Harden7
have shown that a k-ary n-cube can be
partitioned into 2"-' subnetworks, n + 1
levels per subnetwork, and k" channels
per level. The number of additional chan-
nels increases rapidly with n. While this
approach does provide minimal fully
adaptive routing, the cost associated with

Figure 8. Adaptive double Y-channel routing for a 2D mesh: (a) double
Y-channel2D mesh; (b) +X subnetwork and labeling.

February 1993 71

Figure 9. An illustration of the turn model in a 2D mesh: (a) abstract cycles in a
2D mesh; (b) four turns (solid arrows) allowed in XY routing; (c) six turns (sol-
id arrows) allowed in west-first routing.

the additional channels makes it im-
practical when n is large.

Nonminimal adaptive routing. If min-
imal routing is not required, deadlock-
free adaptive routing can be provided
using fewer additional channels. If r
pairs of channels connect every pair of
adjacent nodes, then the following non-
minimal adaptive routing algorithms,
proposed by Dally and Aoki,8 can be
applied to k-ary n-cube and mesh topol-
ogies. Both of these algorithms allow
the packets to take a longer path if there
is no shortest path with all its channels
available.

In the static dimension reversal rout-
ing algorithm, there are r pairs of chan-
nels between any two adjacent nodes.
The network is partitioned into r sub-
networks. The class-i (0 < i < r - 1)
subnetwork consists of all the ith pair
channels. The packet header carries an
additional class field c initially set to 0.
Packets with c < r - 1 can be routed in
any direction in the class-c subnetwork;
thus, the route may be nonminimal.
However, each time a packet is routed
from a high-dimensional channel to a
low-dimensional channel, that is, reverse

to the dimension ordering, the c field is
increased by 1. Once the value of c has
reached r - 1, the packet must use the
deterministic dimension-ordered rout-
ing described earlier for the remainder
of the path. The additional channels
allow a packet to be routed in reverse
dimension order. The parameter r lim-
its the number of times this can happen,
and hence dictates the degree of adap-
tivity of the routing algorithm.

In the dynamic dimension reversal
routing algorithm, the channels are di-
vided into two nonempty classes: adap-
tive and deterministic. Packets origi-
nate in the adaptive channels, where
they can be routed in any direction with
no limit on the number of times the
packet can be routed in reverse dimen-
sion order. However, a packet with c =
p is not allowed to wait on a channel
currently occupied by a packet with c =
q if p 2 q. A packet that reaches a node
where all permissible output channels
are occupied by packets whose values
of c are less than or equal to its own
must switch to the deterministic class of
channels. When a packet enters the de-
terministic channels, it must follow the
dimension-ordered routing described

111 Sourcenode

Destination node

I Other node

t m t - ,

I I

' ' h - d -+ Channeltraversed
by packet

Unavailable channel

igure 10. Examples of west-first routing in an 8 x 8 2D mesh.

earlier and cannot reenter the adaptive
channels. Since it is impossible for a
circular wait to occur among packets in
the adaptive channels, because of the
way cis used, it can be easily shown that
the algorithm is deadlock-free. An im-
portant design issue concerns how many
channels are classified as adaptive and
how many are deterministic between
each pair of adjacent nodes.

The turn model. Given a network
topology and the associated set of chan-
nels, adaptive routing algorithms are
usually developed in an ad hoc way. The
turn model proposed by Glass and Ni9
provides a systematic approach to the
development of maximally adaptive
routing algorithms, both minimal and
nonminimal, for a given network with-
out adding channels. As Figure 5 shows,
deadlock occurs because the packet
routes contain turns that form a cycle.
The following six steps can be used to
develop maximally adaptive routing al-
gorithms for n-dimensional meshes and
k-ary n-cubes:

(1) Classify channels according to the
direction in which they route packets.

(2) Identify the turns that occur be-
tween one direction and another, omit-
ting 0-degree and 180-degree turns.

(3) Identify the simple cycles these
turns can form.

(4) Prohibit one turn in each cycle.
(5) In the case of k-ary n-cubes, in-

corporate as many turns as possible that
involve wraparound channels.

(6) Add 180-degree and 0-degree
turns, which are needed for nonmini-
mal routing algorithms or if there are
multiple channels in the same direction.

The case of a 2D mesh illustrates the
use of the turn model. There are eight
possible turns and two possible abstract
cycles, as shown in Figure 9a. Cycles
among packets may result if the turns
are not restricted, as illustrated in Fig-
ure 5 . The deterministic XY routing
algorithm prevents deadlock by prohib-
iting four of the turns, as shown in Fig-
ure 9b. The remaining four turns cannot
form a cycle, but neither do they allow
any adaptiveness.

The fundamental concept behind the
turn model is to prohibit the smallest
number of turns such that cycles are
prevented. In fact, for a 2D mesh, only
two turns need to be prohibited. Figure
9c shows six turns allowed, suggesting

72 COMPUTER

the corresponding west-first routing al-
gorithm: First route a packet west, if
necessary, and then adaptively south,
east, and north. The two turns prohibit-
ed in Figure 9c are the two turns to the
west. Therefore, to travel west, apacket
must begin in that direction.

Figure 10 shows three example paths
for the west-first algorithm. The chan-
nels marked as unavailable are either
faulty or being used by other packets.
One of the paths shown is minimal, while
the other two paths are nonminimal,
resulting from routing around unavail-
able channels. Because cycles are avoid-
ed, west-first routing is deadlock-free.
For minimal routing, the algorithm is
fully adaptive if the destination is on the
right-hand side (east) of the source; oth-
erwise, it is deterministic. If nonmini-
mal routing is allowed, the algorithm is
adaptive in either case. There are other
ways to select six turns so as to prohibit
cycles, although the selection of the two
prohibited turns is not a r b i t r a r ~ . ~

By applying the turn model to the
hypercube, an adaptive routing algo-
rithm, namely P-cube routing, can be
developed. Le t s = on-,(s), oJs), . . . ,
oo(s) and d = on-l(d), on-2(d)r . . . , o,(d)
be the source and destination nodes,
respectively, in an n-cube. The set E
consists of all the dimension numbers in
which s and d differ. The size of E is the
Hamming distance between s and d.
Thus, i E E if q(s) # o,(d). E is divided
into two disjoint subsets, E, and E,,
where i E E,if o,(s) = O ando,(d) = 1, and
j E E, if q(s) = 1 and o,(d) = 0.

The fundamental concept of P-cube
routingis to divide the routing selection
into two phases. In the first phase, a
packet is routed through the dimen-
sions in E,, in any order. In the second
phase, the packet is routed through the
dimensions in E,. A similar algorithm
was proposed by Konstantinidoulo; how-
ever, the P-cube routing algorithm can
be systematically generalized to handle
nonminimal routing as wells9

Routing in
reconfigurable
networks

In the examples cited thus far, one or
more routing algorithms have been de-
veloped for each type of direct network
topology. It is possible for the network
topology itself to be reconfigurable. For

example, by using basic building-block
nodes such as Intel/CMU's iWarp cells
or elements of the Transputer IMS T9000
family, different network topologies can
be constructed from a given set of com-
ponents. In this case, the router must be
flexible or programmable to allow for
the implementation of different dead-
lock-free routing algorithms. Two tech-
niques are general enough to accommo-
date any topology, given a specific
routing algorithm for each topology,
while permitting the router design to be
relatively simple.

Source routing. The first approach is
source routing, mentioned earlier. De-
pending on the underlying network to-
pology, the source node specifies the
routing path on the basis of a deadlock-
free deterministic routing algorithm. The
packet must carry complete routing in-
formation in the packet header. Since
the header itself must be transmitted
through the network, thereby consum-
ing network bandwidth, it is important
to minimize header length.

One source-routing method that
achieves this goal is called street-sign
routing. The header is analogous to a
set of directions given to a driver in a
city. Only the names of the streets that
the driver must turn on, along with the
direction of the turn, are needed. Street-
sign routing is used in iWarp, where
each router has four pairs of channels
corresponding to four cardinal direc-
tions (+X,-X, +Y,-Y). Bydefault,pack-
ets arriving from the input channel in
+X (or +Y) will be forwarded to the
output channel in -X (or -Y), and vice
versa. The source overrides this default
by including in the header the addresses
of all nodes at which a different action is
to be taken.

There are two possible actions. The

packet has either reached the destina-
tion or it must make a turn. For each
turn, the header must contain the node
address and the direction of the turn.
Furthermore, this information must oc-
cur in the header according to the order
in which nodes are reached. Upon re-
ceiving each header flit, the router com-
pares the node address in the flit to the
local node address. If they match, the
packet either turns or is sent to the
destination, as specified in the header
flit; otherwise, the packet will be for-
warded through the default output chan-
nel. By incorporating the concept of a
default direction, the packet header can
be kept short, requiring less time to
generate and transmit. An appropriate
header-generation algorithm can be
designed for each of the possible topol-
ogies that may be configured.

Table-lookup routing. Another ap-
proach that is amenable to reconfigu-
rable topologies is to perform routing
by using table lookup. An obvious im-
plementation is to place a lookup table
at each node, with the number of entries
in the table equal to the number of
nodes in the network. Given a destina-
tion node address carried in the header,
the corresponding entry in the table
indicates which outgoing channel should
be used to forward the packet. Such an
implementation is not practical, howev-
er, because the size of the lookup table
places an artificial upper bound on the
network size, and the large table is inef-
ficient in the use of chip area.

One way to reduce the table size is to
define a range of addresses to be asso-
ciated with each outgoing channeL5
For example, each node of the 4 x 3 2D
mesh shown in Figure l l a is assigned a
label ! (x , y) . Consider the node (l , l) ,
which is labeled 4. Let d be the label of

Figure 11. The labeling of a 4 x 3 mesh: (a) physical network; (b) high-channel
network; (c) low-channel network.

February 1993 73

J I

Figure 12. Four virtual channels share a unidirectional physical channel.

the destination address in a packet. Each
routing table requires only four entries,
one for each outgoing channel. For ex-
ample, the routing table at node (1,l)
will contain the following information.
Ford 2 7, the packet will be routed using
the +Y channel. For 5 I d < 7 , l < d I 3,
and d I 1, the packet will be routed
through channels -X, +X, and -Y, re-
spectively.

In table-lookup routing, the most
important issue is how to assign appro-
priate labels to nodes so that minimal,
deadlock-free routing results. One such
strategy for a 2 D mesh topology with N
nodes assigns a label to each node on
the basis of its position in a particular
Hamiltonian path of the network graphs;
the first node in the path is labeled 0,
and the last node in the path is labeled
N - 1. A label assignment function 1 for
an m x n mesh that results in minimal
routing is

y * n + x if y is even
1(X3Y)={ y*n+n-x-1 i fyisodd

This labeling effectively divides the net-
work into two subnetworks, shown in
Figures l l b and l l c . The high-channel
subnetwork contains all of the channels
whose direction is from lower labeled
nodes to higher labeled nodes, and the
low-channel subnetwork contains all of
the channels whose direction is from
higher labeled nodes to lower labeled
nodes. Since both subnetworks are acy-
clic, it is easily shown that this table-
lookup routing algorithm is deadlock-
free.

A deadlock-free table-lookup rout-

ing algorithm for the hypercube is also
given by Lin and NLS For the hyper-
cube, the label assignment function !
for a node with address dn-l d,,-, . . . do is

n-1
!(d,z-ld,z-2 ... d o) = ~ (c r & 2 ' + T i d i 2 ')

r=O

where c,,-~ = 0, ctz-, = d,,-, 0 dn-* 0 . . . 0
d,!-,+, for 1 < j I n. A similar technique is
used in the Inmos IMS T9000 transput-
er, where it is referred to as interval
labeling.

Virtual channels

Some adaptive routing algorithms
require multiple pairs of channels be-
tween adjacent nodes. Implementing
each channel in a wormhole-routed net-
work with a separate set of physical
wires is very expensive. Furthermore,
in most applications the channel utiliza-
tion is not high. One way to address this
problem is to multiplex several virtual
channels on a single physical communi-
cation channel. Each virtual channel
has its own flit buffer, control, and data
path." In some designs, such as those of
the Intel Touchstone and Intel/CMU
iWarp, several unidirectional channels
in the same direction share a single phys-
ical unidirectional channel; in other
 design^,^ unidirectional virtual channels
in opposite directions share a physical
bidirectional channel.

Through virtual channels, a physical
network can be divided into multiple
disjoint logical networks, thereby facil-

itating adaptive routing algorithms. Vir-
tual channels are useful in three other
ways. First, by increasing the degree of
connectivity in the network, they facil-
itate the mapping onto aparticularphys-
ical topology of applications in which
processes communicate according to
another logical topology. For example,
an application in which processes com-
municate according to a hexagonal ar-
ray can be mapped onto a 2D mesh.
Second, even when the application and
the architecture have the same topolo-
gy, extra connections may still be need-
ed to route around congested or faulty
nodes. Third, virtual channels provide
the ability to deliver guaranteed com-
munication bandwidth to certain class-
es of packets. For example, it is impor-
tant that some bandwidth be reserved
to support system-related functions, such
as debugging, monitoring, and system
diagnosis. By time-multiplexing virtual
channels onto physical channels using a
fair schedule, availability of some min-
imum bandwidth can be guaranteed to
each virtual channel as long as the num-
ber of virtual channels sharing the same
physical channel is bounded.

The most important issue concerning
virtual channels is the multiplexing and
arbitration of a physical channel among
many virtual channels. The multiplex-
ing technique should be designed to
maximize channel utilization. Specifi-
cally, if m virtual channels share a phys-
ical channel with bandwidth W, and k
virtual channels are active, where 1 I k
5 m, then each active virtual channel
should have an effective bandwidth of
Wlk. Since the number of active virtual
channels is a function of time, the rout-
er should be able to dynamically allo-
cate channel bandwidth to the active
virtual channels.

Figure 12 illustrates the sharing of
four virtual channels over a unidirec-
tionalphysical channel. A dedicated sin-
gle-bit Request/Acknowledge wire ex-
ists between an input virtual channel
and an output virtual channel of two
adjacent nodes, as shown in Figure 4.
The scheduler multiplexes data from
the virtual channels over the physical
channel. A fair scheduling discipline,
such as round-robin, can be used. To
preserve bandwidth, only those virtual
channels that have a nonempty flit buff-
er at the sending side and a nonfull flit
buffer at the receiving side may partic-
ipate in the scheduling decision. In oth-
er words, among all of the low RIA

74 COMPUTER

lines, the scheduler on the sending side
will decide which output channel with a
nonempty flit buffer can raise its RIA
line to high and use the physical chan-
nel.

Using a pair of opposite unidirection-
al channels between two adjacent nodes
simplifies control. However, if these two
unidirectional channels are not fully
utilized, one may be busy while the oth-
er is idle. Combining two unidirectional
channels into a single bidirectional chan-
nel will increase channel utilization.
Assuming the bandwidth of each unidi-
rectional channel is B, the bandwidth of
the corresponding bidirectional chan-
nel will be 2B. If only one of the nodes
has packets to transmit, it can use the
full bandwidth. The design of a bidirec-
tional channel must provide a fair and
efficient arbitration scheme between two
sides. One such arbitration method is
based on the concept of token passing:
in which a single-bit arbitration line is
used to transfer control of the channel
between two adjacent nodes.

The virtual channel concept is not
without drawbacks. As the number of
virtual channels increases, the schedul-
ing becomes more complicated, requir-
ing additional hardware complexity and
potentially increasing network latency.
The sharing of bandwidth may also in-
crease latency. Consider the following
scenario in which a communication path
traverses multiple physical channels,
each of which supports many virtual
channels. If the bandwidth of eachphys-
ical channel is Wand there is no sharing
with other virtual channels, the effec-
tive bandwidth of the communication
path is W. On the other hand, if one of
the physical channels along the path is
shared with three other packets, that
channel becomes a bottleneck and the
effective bandwidth of the entire path is
reduced to W14, even though the avail-
able bandwidth of all other channels in
the path is W. The trade-off between
increased network throughput and long-
er communication latency should be
considered when deciding whether to
use virtual channels.

Open issues
As we have described, wormhole rout-

ing algorithms have already been sub-
jected to extensive research. However,
we should briefly mention several relat-
ed topics that have only recently re-

ceived attention from the research com-
munity.

The primary research tools used thus
far to study the performance of worm-
hole routing algorithms have been anal-
ysis and simulation, in which either
uniform or generic parameterized
workloads have been used to evaluate
routing algorithms. To account for the
characteristics of specific application
software, traces of communication in
actual parallel programs must be incor-
porated into such models. More research
is needed in this direction before a real-
istic and practical performance com-
parison study on the algorithms pre-
sented in this article can be conducted.
In addition, researchers need simula-
tion programs that efficiently model
variations of wormhole routing, includ-
ing virtual channels, large flit buffers,
and sophisticated input and output se-
lection policies.

A major goal in the design of direct
networks is to minimize the constituent
elements of communication latency so
that such systems can support a finer
grain of parallelism. Start-up latency,
which may include time for memory
and buffer coping, can significantly de-
grade performance. Methods to reduce
start-up latency deserve further investi-
gation, although significant progress in
this area has been reported recently.
The MIT J-machine uses special hard-
ware to achieve a start-up latency of 2
microseconds, and the Ncube-3 is
claimed to exhibit a start-up latency of
5 microseconds.

A related issue concerns the number
of internal channels connecting the lo-
cal processor/memory to the router.
Most commercial multiprocessors sup-
port a single pair of internal channels,
which may become a bottleneck for
packets entering and leaving the direct
network. One system that supports
multiple pairs of internal channels is the
Intel/CMU iWarp. The appropriate
number of internal channels and their
cost/performance trade-offs require fur-
ther study.

Since the normal behavior of worm-
hole-routed networks is still a subject of
intense research, this article has not
addressed the issues of fault tolerance
or reliable routing, which are desirable
in highly reliable systems. The tradi-
tional “replace-and-reboot’’ approach
is used in most existing direct network
systems. Investigation of routing and
flow control methods for injured worm-

hole-routed direct networks will likely
receive much attention when research
in this area becomes more mature and
demand increases for highly reliable
parallel computing environments.

Finally, this article has surveyed rout-
ing algorithms for single-destination, or
unicast, communication. Another area
of intensive research concerns one-to-
many, or multicast, communication.
Broadcast is a special case of multicast
in which a message is delivered to all
nodes in the network. Efficient multi-
cast communication has been shown to
be useful in applications such as parallel
simulation and parallel search, as well
as in operations such as replication and
barrier synchronization, found in data
parallel languages. Ongoing research
concerning multicast communication in
wormhole-routed systems includes the
study of deadlock-free, hardware-sup-
ported multicast routing algorithms5 and
software-based multicast communica-
tion.12 In spite of these efforts, much of
the wormhole multicast problem, espe-
cially performance evaluation of multi-
cast protocols under actual workloads,
remains open to study.

D irect network architectures are
strong candidates for use in
massively parallel computers,

as evidenced by many successful com-
mercial and experimental multicomput-
ers and scalable shared-memory multi-
processors. The characteristics of direct
networks, as reflected by the communi-
cation latency metric, are critical to the
performance of such systems. Worm-
hole routing, the most promising switch-
ing technique, has been adopted in sev-
eral new massively parallel computers.
However, wormhole routing also raises
unique technical challenges in routing
and flow control - in particular, the
development of routing algorithms that
avoid deadlock. The problem is compli-
cated by the need for adaptive routing
and reconfigurable topologies. We have
tried to elucidate such issues while sur-
veying various strategies that have been
used or proposed to address them.

Acknowledgments
We would like to thank Xiaola Lin and

Christopher Glass for their invaluable con-
tributions to this work. Thanks are also due
to the anonymous reviewers for their many

February 1993 75

FIBERS CABLES, COMPONENTS,
NETWORKS & SYSTEMS

FOR VOICE, VIDEO, & DATA

The OFC Technical conference features
300 refereed papers in four principal

areas: Fibers, Cables and
Glass’Tec h nolog ies

Optoelectrsnic and 1ntegrated:Optics
Devices and Component$

S p m Technologies ‘I
Ne, orks and Switching ~

Sponsored by
IEEE Communications Society

IEEE/Lasers & Electro
Optics Society

Optical Society of America

For further information, contact:
Optical Society of America

201 0 Massachusetts Ave, NW
Washington DC 20036-1 023

Fax (202) 41 6-61 40
OFC Exhibits Dept. (202) 4 16- 1950

insightful comments and suggestions for im-
provement.

This research was supported in part by
National Science Foundation Grants ECS-
8814027, CDA-9121641, and MIP-9204066,
and by an Ameritech Faculty Fellowship.

12. P.K. McKinley et al., “Unicast-Based
Multicast Communication in Wormhole-
RoutedNetworks,” Proc. 1992 Int’l Conf
Parallel Processing, Vol. 11, IEEE CS
Press, Los Alamitos, Calif., Order No.
3155, 1992, pp. 10-19.

References
1. W.C. Athas and C.L. Seitz, “Multicom-

puters: Message-Passing Concurrent
Computers,” Computer, Vol. 21, No. 8,
Aug. 1988, pp. 9-25.

2. S. Thakkar et al., “Scalable Shared-Mem-
ory Multiprocessor Architectures,” Com-
puter, Vol. 23, No. 6, June 1990, pp. 71-
83.

3. W.J. Dally and C.L. Seitz, “The Torus
Routing Chip,” J. Distributed Comput-
ing, Vol. 1, No. 3, 1986, pp. 187-196.

4. W.J. Dally and P. Song, “Design of a
Self-Timed VLSI Multicomputer Com-
munication Controller,” Proc. Int’l Conf
Computer Design, IEEE CS Press, Los
Alamitos, Calif., Order No. 2473, 1987,
pp. 230-234.

5. X. Lin and L.M. Ni, “Deadlock-Free
Multicast Wormhole Routing in Multi-
computer Networks,” Proc. 18th Int’l
Symp. Computer Architecture, IEEE CS
Press, Los Alamitos, Calif., Order No.
2146,1991, pp. 116-125.

6. W.J. Dally and C.L. Seitz, “Deadlock-
Free Message Routing in Multiprocessor
Interconnection Networks,” IEEE Trans.
Computers, Vol. C-36, No. 5, May 1987,
pp. 547-553.

7. D.H. Linder and J.C. Harden, “An Adap-
tive and Fault-Tolerant Wormhole Rout-
ing Strategy for k-ary n-cubes,” IEEE
Trans. Computers, Vol. 40, No. 1, Jan.
1991, pp. 2-12.

8. W.J. Dally and H. Aoki, “Adaptive Rout-
ing Using Virtual Channels,” tech. re-
port, MIT Laboratory for Computer Sci-
ence, Sept. 1990. To appear in IEEE
Trans. Parallel and Distributed Systems.

9. C.J. Glass and L.M. Ni, “The Turn Model
for Adaptive Routing,” Proc. 19th Int’l
Syn~p. Computer Architecture, IEEE CS
Press, Los Alamitos, Calif., Order No.
2940, 1992, pp. 278-287.

10. S. Konstantinidou, “Adaptive, Minimal
Routing in Hypercubes,” Proc. Sixth MIT
Conf Advanced Research in VLSI, MIT
Press, Cambridge, Mass., 1990, pp. 139-
153.

11. W.J. Dally, “Virtual-Channel Flow Con-
trol,” IEEE Trans. Parallel and Distrib-
uted Systems, Vol. 3, No. 2, Mar. 1992, pp.
194-205.

Lionel M. Ni is a professor in the Depart-
ment of Computer Science and director of
the Advanced Computer Systems Laborato-
ry at Michigan State University. His research
interests include computer architecture, par-
allel processing, and distributed computing.

Ni received a BS in electrical engineering
from National Taiwan University in 1973, an
MS in electrical and computer engineering
from Wayne State University in 1977, and a
PhD in electrical engineering from Purdue
University in 1980. He is a member of the
ACM, the Society for Industrial and Applied
Mathematics, and the IEEE Computer Soci-
ety, and he serves on the editorial board of
the Journal of Parallel and Distribzited Com-
puting and IEEE Transactions on Comput-
ers.

Philip K. McKinley is an assistant professor
in the Department of Computer Science at
Michigan State University and was previous-
ly a member of technical staff at Bell Labo-
ratories. His research interests include scal-
able architectures and software, optical
communications, and multicast communica-
tion for parallel processing and computer
networks.

McKinley received a BS in mathematics
and computer science from Iowa State Uni-
versity in 1982, an MS in computer science
from Purdue University in 1983, and a PhD
in computer science from the University of
Illinois at Urbana-Champaign in 1989. He is
a member of ACM and the IEEE Computer
Society.

The authors can be contacted at Michi-
gan State University, Dept. of Computer
Science, A714 Wells Hall, East Lansing,
MI 48824-1027, e-mail (ni, mckinley]@cps.
msu.edu.

COMPUTER

http://msu.edu

