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Efficient routing of 
messages is critical to 

the performance of 
direct network systems. 
The popular wormhole 
routing technique faces 
several challenges - 

particularly flow 
control and deadlock 

avoidance. 

assively parallel computers with thousands of processors are considered 
the most promising technology to achieve teraflops computational 
power. Such large-scale multiprocessors are usually organized as en- 

sembles of nodes, where each node has its own processor, local memory, and other 
supporting devices. These nodes may have different functional capabilities. For 
example, the set of nodes may include vector processors, graphics processors, I/O 
processors, and symbolic processors. 

The way the nodes are connected to one another varies among machines. In a 
direct network architecture, each node has a point-to-point, or direct, connection 
to some number of other nodes, called neighboring nodes. Direct networks have 
become a popular architecture for constructing massively parallel computers 
because they scale well; that is, as the number of nodes in the system increases, the 
total communication bandwidth, memory bandwidth, and processing capability of 
the system also increase. Figure 1 shows a generic multiprocessor with a set of 
nodes interconnected through a direct network. 

Because they do not physically share memory, nodes must communicate by 
passing messages through the network. Message size may vary, depending on the 
application. For efficient and fair use of network resources, a message is often 
divided into packets prior to transmission. A packet is the smallest unit of 
communication that contains routing and sequencing information; this informa- 
tion is carried in the packet header. Neighboring nodes may send packets to one 
another directly, while nodes that are not directly connected must rely on other 
nodes in the network to relay packets from source to destination. In many systems, 
each node contains a separate router to handle such communication-related tasks. 
Although a router’s function could be performed by the corresponding local 
processor, dedicated routers are used to allow overlapped computation and 
communication within each node, 

Figure 2 shows the architecture of a generic node. Each router supports some 
number of input and output channels. Normally, every input channel is paired with 
a corresponding output channel. Internal channels connect the local processor/ 
memory to the router. Although it is common to provide only one pair of internal 
channels, some systems use more internal channels to avoid a communication 
bottleneck between the local processor/memory and the router. External channels 
are used for communication between routers and, therefore, between nodes. In 
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this article, unless otherwise specified, 
the term channel will refer to an exter- 
nal channel. By connecting the input 
channels of one node to the output chan- 
nels of other nodes, the topology of the 
direct network is defined. A packet sent 
between two nodes that are not neigh- 
boring must be forwarded by routers 
along multiple external channels. Usu- 
ally, a crossbar is used to allow all pos- 
sible connections between the input and 
output channels within the router. The 
sequential list of channels traversed by 
such a packet is called a path, and the 
number of channels in the path is called 
the path length. 

The programmer of a multiprocessor 
based on a direct network can invoke 
various system primitives to send mes- 
sages between processes executing on 
different nodes. Writing such a mes- 
sage-passing program has been tradi- 
tionally difficult and error prone. Sys- 
tems used in this manner have been 
referred to as message-passing multi- 
computers.' Recently, an alternative 
approach has been pursued, whereby a 
sophisticated compiler generates data- 
movement operations from shared- 
memory parallel programs. For a user, 
the shared-memory programming par- 
adigm is usually simpler and more intu- 
itive than dealing with the low-level 
details of message passing. Systems used 
in this manner have been referred to as 
scalable shared-memory multiproces- 

Whether a direct network system is 
used to support a message-passing or a 
shared-memory programming paradigm, 
the time required to move data between 
nodes is critical to system performance, 
as it effectively determines what granu- 
larity levels of parallelism are possible 
in executing an application program. A 
metric commonly used to evaluate a 
direct network system is communica- 
tion latency, which is the sum of three 
values: start-up latency, network laten- 
cy, and blocking time. 

Start-up latency is the time required 
for the system to handle the packet at 
both the source and destination nodes. 
Its value depends mainly on the design 
of system software and the interface 
between local processors and routers. 
Start-up latency can be further decom- 
posed into sending latency and receiv- 
ing latency - the start-up latencies in- 
curred at the sending node and the 
receiving node, respectively. The net- 
work latency equals the elapsed time 

Direct network 

Figure 1. A generic multiprocessor based on a direct network. 
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Figure 2. A generic node architecture. 

after the head of a packet has entered 
the network at the source until the tail 
of the packet emerges from the network 
at the destination. Start-up latency and 
network latency are static for a given 
system; that is, the sum of their values 
reflects the latency of packets sent in 
the absence of other network traffic and 
transient system activities. 

The blocking time includes all possi- 
ble delays encountered during the life- 
time of a packet. These delays are due 
mainly to conflicts over the use of shared 
resources, for example, delays due to 
channel contention, in which two pack- 
ets simultaneously require the same 
channel. Blocking time reflects the dy- 
namic behavior of the network result- 
ing from the passing of multiple pack- 
ets; it may be high if the network traffic 
is heavy or unevenly distributed. 

The communication latency of a di- 
rect network depends on several archi- 
tectural characteristics; one of the most 

important is the type of switching tech- 
nology used by routers to transfer data 
frominput channels to output channels. 
A variety of switching techniques have 
been used in direct networks. One meth- 
od, called wormhole r o ~ t i n g , ~  has be- 
come quite popular in recent years. This 
article surveys the research contribu- 
tions and commercial ventures related 
to wormhole routing. We review the 
properties of direct networks, then de- 
scribe in detail the operation and char- 
acteristics of wormhole routing. By its 
nature, wormhole routing is particular- 
ly susceptible to deadlock situations, in 
which two or more packets may block 
one another indefinitely. Deadlock 
avoidance is usually guaranteed by the 
routing algorithm, which selects the path 
a packet takes. We describe several ap- 
proaches to deadlock-free routing, along 
with a technique that allows multiple 
virtual channels to share the same phys- 
ical channel. In addition, we discuss sev- 
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era1 open issues related to wormhole 
routing. 

Characteristics of 
direct networks 

The average communication latency 
in a direct network depends on several 
network properties. A direct network is 
characterized by four factors: topology, 
routing, flow control, and switching. 

Topology.The topology of a network, 
usually modeled as a graph, defines how 
the nodes are interconnected by chan- 
nels. If every node is connected directly 
to every other node, the network topol- 
ogy is fully connected, or complete. 
Although complete topologies obviate 
forwarding of packets by intermediate 
nodes, they are practical only for very 
small networks because the number of 
physical connections per node is limited 
by rigid constraints, such as the number 
of available pins and pads on the router 
and the amount of VLSI area available 
for communication-related hardware. 
These engineering and scaling difficul- 
ties preclude networks with large com- 
plete topologies. 

Therefore, many direct networks use 
a fixed, multiple-hop topology, such as a 
hypercube or two-dimensional mesh, 
each of which is a special case of k-aryn- 
cubes or n-dimensional meshes. (See 
the “Direct network topologies” side- 
bar for detailed definitions.) In multi- 
ple-hop topologies, packets may tra- 
verse one or more intermediate nodes 
before reaching the destination. Some 
computers provide basic cells that can 
be configured as different topologies, 
depending on the application. For ex- 
ample, if each router has one input chan- 
nel and one output channel, the only 
feasible interconnection topology is a 
unidirectional ring. If each router has 
two input channels and two output chan- 
nels, possible interconnection topolo- 
gies include a bidirectional linear array 
and a bidirectional ring. With enough 
input and output channels, direct net- 
works of arbitrary size and topology can 
be constructed. 

Two conflicting requirements of a 
direct network are that it must accom- 
modate a large number of nodes and 
exhibit a low network latency. As the 
number of nodes increases, the number 
of wires needed to interconnect them 

also increases. The complexity of the 
connection is said to be wire limited: the 
more edges in a topology, the more 
difficult that topology is to fabricate in 
a limited area. 

Several parameters are used to study 
this problem. The bisection width of a 
topology is the minimum number of 
channels that must be removed, or cut, 
to  partition the network into two sub- 
networks, each containing half the nodes 
in the network. The channel width is the 
number of bits that can be transmitted 
simultaneously on a physical channel 
between two adjacent nodes, and the 
channel rate is the peak rate at which 
bits can be transferred over each indi- 
vidual line of a physical channel. The 
channel bandwidth, which is the prod- 
uct of the channel width and the chan- 
nel rate, determines the communica- 
tion performance of a direct network. 
Bisection density, the product of bisec- 
tion width and the channel width, can 
be used as a measure of network cost. 
For a given bisection density, a large 
bisection width dictates a small channel 
width. 

For a given number of network nodes, 
low-dimensional mesh networks have 
much lower bisection widths than, say, 
hypercubes; consequently, they can of- 
fer wider channels and a higher channel 
bandwidth for a given bisection density 
(see “Direct network topologies” side- 
bar for details). A disadvantage of low- 
dimensional networks is that the aver- 
age distance between nodes is relatively 
large. For systems in which the network 
latency depends on the path length, the 
hypercube is a popular choice of topol- 
ogy because of its relatively small inter- 
node distance. However, in other sys- 
tems, such as those that  support  
wormhole routing, the network latency 
is almost independent of the path length 
when there is no contention and the 
packet length is relatively large. Low- 
dimensional meshes are popular topol- 
ogies for such systems because the neg- 
ative effects of their large internode 
distance are minimized. 

Routing. A direct network topology 
must allow every node to send packets 
to every other node. In the absence of a 
complete topology, routing determines 
the path selected by a packet to reach its 
destination. Efficient routing is critical 
to the performance of direct networks. 

Routing can be classified in several 
ways. In source routing, the source node 

selects the entire path before sending 
the packet. Each packet must carry this 
routing information, increasing the pack- 
et size. Furthermore, the path cannot be 
changed after the packet has left the 
source. Most direct network systems 
use distributed routing. In this approach, 
each router, upon receiving the packet, 
decides whether it should be delivered 
to  the local processor or forwarded to a 
neighboring router. In the latter case, 
the routing algorithm is invoked to  de- 
termine which neighbor should be sent 
the packet. In a practical router design, 
the routing decision process must be as 
fast as possible to reduce the network 
latency. A good routing algorithm should 
also be easily implemented in hardware. 
Furthermore, the decision process usu- 
ally does not require global state infor- 
mation of the network. Providing such 
information to each router creates ad- 
ditional traffic and requires additional 
storage space in each router. 

Routing can also be classified as de- 
terministic or adaptive. In determinis- 
tic routing, the path is completely deter- 
mined by the source and destination 
addresses. This method is also referred 
to  as oblivious routing. A routing tech- 
nique is adaptive if, for a given source 
and destination, the path taken by a 
particular packet depends on dynamic 
network conditions, such as the pres- 
ence of faulty or congested channels. 

A routing algorithm is said to be min- 
imal if the path selected is one of the 
shortest paths between the source and 
destination pair. Using a minimal rout- 
ing algorithm, every channel visited will 
bring the packet closer to the destina- 
tion. A nonminimal routing algorithm 
allows packets to follow a longer path, 
usually in response to current network 
conditions. If nonminimal routing is 
used, care must be taken to avoid a 
situation in which the packet will con- 
tinue to be routed through the network 
but never reach the destination. 

Flow control. A network consists of 
many channels and buffers. Flow con- 
trol deals with the allocation of chan- 
nels and buffers to a packet as it travels 
along a path through the network. A 
resource collision occurs when a packet 
cannot proceed because some resource 
that it requires is held by another pack- 
et. Whether the packet is dropped, 
blocked in place, buffered, or rerouted 
through another channel depends on 
the flow control policy. A good flow 
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control policy should avoid channel con- 
gestion while reducing the network la- 
tency. 

The allocation of channels and their 
associated buffers to packets can be 
viewed from two perspectives. The rout- 
ing algorithm determines which output 

channel is selected for a packet arriv- 
ing on a given input channel. There- 
fore, routing can be referred to as the 
output  selection pol icy .  Since an outgo- 
ing channel can be requested by pack- 
ets arriving on many different input 
channels, an input  selection policy is 

needed to determine which packet may 
use the output channel. Possible input 
selection policies include round robin, 
fixed channel priority, and first come, 
first served. The input selection policy 
affects the fairness of routing algo- 
rithms. 

Switching techniques 

Early direct networks used store-and-forward switching 
borrowed from the computer network community. In this ap- 
proach, when a packet reaches an intermediate node, the 
entire packet is stored in a packet buffer. The packet is 
then forwarded to a selected neighboring node when the 
next output channel is available and the neighboring node 
has an available buffer. This switching strategy was adopt- 
ed in the research prototype Cosmic Cube and several 
first-generation commercial multicomputers, including the 
iPSC-1, Ncube 1, Ametek 14, and FPS T-series. Store- 
and-forward switching is simple, but it has two major draw- 
backs. First, each node must buffer every incoming packet, 
consuming memory space. Second, the network latency is 
proportional to the distance between the source and desti- 
nation nodes. The network latency is (L/B) 0, where L is the 
packet length, B is the channel bandwidth, and D is the 
length of the path between the source and destination 
nodes. 

Kermani and Kleinrock introduced the virtu 
method for computer communication netwo 

To decrease the amount of time spent transmitting data, 

distance D will 

establishment phase. I 
packet is transmitted 
During this phase, th 
reserved exclusively 
for buffers at the inte 
tion phase, the circui 

where L, is the length of the control pack 
establish the circuit. If L, cc L, the distan 
ble effect on the network I 
tablished because a des 

formance study of different circuit switching techniques2 
Wormhole routing also uses a cut-through approach to 

switching. A packet is divided into a number of f/i& (flow 
) for transmission. The header flit (or flits) gov- 
e. As the header advances along the specified 

aining flits follow in a pipeline fashion. If the 
header flit encounters a channel already in use, it is 
blocked until the channel becomes available. Rather than 
buffering the remaining flits by removing them from the net- 
work channels, as in virtual cut-through, the flow control 
within the network blocks the trailing flits and they remain in 
flit buffers along the established route. The network latency 
for wormhole routing is (L,/B)D + L/B, where L,is the length 
of each flit, 6 is the channel bandwidth, D is the path 
length, and L is the length of the message. If L,c< L, the 
path length D will not significantly affect the network latency 
unless it is very large. 

Both computer networks and direct networks can imple- 
ment and share the above switching techniques. Since cut- 

s not have to buffer the entire packet 
the next node, the data-link-level 
This is good for direct networks, as 

ty and overhead are further reduced. 
the high transmission error rate in 

computer networks, eliminating the data-link-level protocol 
wilt delay the detection of a transmission error. The error 
will be detected by an end-to-end acknowledgment provid- 

e transport layer. This is the main reason that cut- 
switching IS not normally used in computer net- 

works. 

hole routing with that of storeand-forward switching and 
Figure B compares the communication latency of worm- 

I 

f each node over time 
a source node S to the 
ntermediate nodes, /I, E ,  
er the packet between 
r, and between the last 
or, is ignored. Unlike 

store-and-forward switching, both circuit switching and 



Switching. While the input and out- 
put selection policies determine how a 
packet uses channels as it traverses an 
intermediate router, switching is the 
actual mechanism that removes data 
from an input channel and places it on 
an output channel. Network latency is 

I1 

wormhole routing have communication 
latencies that are nearly independent of 
the distance between the source and 
destination nodes. 

This characteristic is confirmed by 
measurements on actual machines. 
Figure C plots the communication la- 
tency versus path length for a 1-Kbyte 
packet transmitted using three switch- 
ing techniques: store-and-forward 
switching (on a 64-node Ncube-1 at 
Michigan State University), circuit 
switching (on a 32-node iPSC/2 at the 
University of Missouri-Rolla), and 
wormhole routing (on a 64-node 
Ncube-2 at Purdue University). The la- 
tencies of both circuit switching and 
wormhole routing demonstrate virtually 
no sensitivity to distance. In these mea- 
surements, the traffic is generated such 
that there is no channel contention. 
Thus, the communication latency does 
not include the blocking time. 

The first commercial multiprocessor 
to adopt wormhole routing was the 
Ametek 2010, which used a 2D mesh 
topology. This machine was renamed 
Symult 201 0 and ceased production in 
1990. The Ncube-2, announced in 
1989, also uses wormhole routing in a 
hypercube. Intel/DARPAs Touchstone 
Delta, delivered in 1991, uses worm- 
hole routing based on a 2D mesh, as 
does the Intel Paragon, announced in 
1991. The research prototype J-ma- 
chine, built at the Massachusetts Insti- 
tute of Technology in 1991, uses worm- 
hole routing in a 3D mesh. Both Intel/ 
CMU’s iWarp and the Transputer IMS 
T9000 family use wormhole routing in 
their basic building-block nodes. Addi- 
tional material and complete references 
for these machines are available in the 
l i terat~re.~ 
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Figure 3. Wormhole routing. 

highly dependent on the switching tech- 
nique used. Four switching techniques 
have been adopted in direct networks: 
store-and-forward, circuit switching, 
virtual cut-through, and wormhole rout- 
ing (see “Switching techniques” sidebar 
on pages 66-67). In store-and-forward 
switching, also called packet switching, 
when a packet reaches an intermediate 
node, the entire packet is stored in a 
packet buffer. The packet is then for- 
warded to a selected neighboring node 
when the next channel is available and 
the neighboring node has an available 
packet buffer. In circuit switching, a 
physical circuit is constructed between 
the source and destination nodes. After 
the packet has been transmitted along 
the circuit to the destination, the circuit 
is torn down. In virtual cut-through, the 
packet header is examined upon arrival 
at an intermediate node. The packet is 
stored at the intermediate node only if 
the next required channel is busy; oth- 

Figure 4. Hand- 
shaking between 

two routers 
through a re- 

questlackuowl- 
edge line: (a) B 

is ready to ac- 
cept a flit by set- 
ting R/A to low; 

(b) A is ready 
to send flit i by 
raising lUA to 

high; (c) flit i is 
latched in B’s 

flit buffer; (d) B 
sets WA to low 
when flit i is re- 
moved (also, A 

has received 
flit i + 1). 

erwise, it is forwarded immediately with- 
out buffering. 

Circuit switching and virtual cut- 
through are both based on the concept 
of cut-through, which can significantly 
reduce the network latency. Specifi- 
cally, the delay introduced by each in- 
termediate router is small. If the start- 
up latency (about 385 microseconds in 
Ncube-1 and 150 microseconds in 
Ncube-2) is very large relative to the 
delay at each router, the network laten- 
cy contributes little to the communica- 
tion latency unless the path is very long. 
However, as network traffic increases, 
the blocking time, which is a function 
of the path length, may become sig- 
nificant. 

Wormhole routing 

Although both virtual cut-through and 
circuit switching offer low network la- 

tencies that are relatively independent 
of path length, virtual cut-through re- 
quires that blocked packets be buff- 
ered, and circuit switching makes it dif- 
ficult to support sharing of channels 
among packets. Wormhole routing, pro- 
posed by Dally and Seitz; was designed 
to overcome these difficulties while of- 
fering similar network latency. 

Wormhole routing also uses a cut- 
through approach to  switching. A pack- 
et is divided into a number offlits (flow 
control digits) for transmission. The size 
of a flit depends on system parameters, 
in particular the channel width. Nor- 
mally, the bits constituting a flit are 
transmittedin parallel between two rout- 
ers. The header flit (or flits) of a packet 
governs the route. As the header ad- 
vances along the specified route, the 
remaining flits follow in a pipeline fash- 
ion, as shown in Figure 3. If the header 
flit encounters a channel already in use. 
it is blocked until the channel becomes 
available. Rather than buffering the 
remaining flits by removing them from 
the network channels, as in virtual cut- 
through, the flow control within the 
network blocks the trailing flits and they 
remain in flit buffers along the estab- 
lished route. Once a channel has been 
acquired by a packet, it is reserved for 
the packet. The channelisreleasedwhen 
the last, or tail, flit has been transmitted 
on the channel. 

The pipelined nature of wormhole 
routing produces two positive effects. 
First, the absence of network conten- 

A B 

U 
Flit i 

A B 

0 
Flit i 
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tion makes the network latency rela- 
tively insensitive to path length. Sec- 
ond, large packet buffers at each inter- 
mediate node are obviated; only a small 
FIFO (first in, first out) flit buffer is 
required. In some wormhole-routed sys- 
tems, such as the Ncube-2 and 
Symult 2010, the flit buffer can hold 
only one flit. Other systems, such as 
the J-machine, a fine-grained system 
built at the Massachusetts Institute of 
Technology, have demonstrated im- 
proved network performance by using 
larger flit buffers. In the extreme, when 
the flit buffers are as large as the pack- 
ets themselves, the behavior of worm- 
hole routing resembles that of virtual 
cut-through. 

If a large-scale wormhole-routed net- 
work is to be constructed, the effects of 
propagation delay make it difficult to 
distribute a high-speed synchronous 
clock to all nodes over a physically large 
area. Therefore, a popular approach has 
been self-timed circuit d e ~ i g n , ~  in which 
flits passing between two adjacent nodes 
must use a handshaking protocol. In the 
example in Figure 4, a unidirectional 
channel from router A connects to rout- 
er B. A single-wire request/acknowl- 
edge (R/A) line is associated with the 
channel. The R/A line can be raised 
only by router A ,  the requesting side, 
and lowered only by router B, the ac- 
knowledging side. When A is ready to 
send a flit to B, A must wait until the R/ 
A line is low. A then places the data on 
the data channel and raises the R/A line 
to high. Router B will lower the RIA 
line when it has removed the flit from 
the flit buffer (or, in the case of large flit 
buffers, if there is an empty flit slot in 
the buffer). 

The way wormhole-routed packets 
acquire and use channels leads to other 
advantages over circuit switching. In 
circuit switching, once a channel is as- 
signed to a packet, it cannot be used by 
other packets until the channel is re- 
leased. In contrast, wormhole routing 
allows a channel to be shared by many 
packets. We discuss this virtual channel 
concept later. Furthermore, wormhole 
routing allows packet replication, in 
which copies of a flit can be sent on 
multiple output channels. Packet repli- 
cation is useful in supporting broadcast 
and multicast comm~nicat ion.~ By its 
nature, circuit switching does not per- 
mit packet replication. 

Wormhole routing has been a popu- 
lar switching technique in new-genera- 
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Figure 5. An example of channel deadlock involving four packets. 

tion direct networks. The first commer- 
cial multicomputer to adopt wormhole 
routing was the Ametek 2010, which 
used a 2D mesh topology. (This ma- 
chine was later renamed the Symult 
2010.) The Ncube-2, which uses a hy- 
percube topology, has also adopted 
wormhole routing. The IntelTouchstone 
Delta and Intel Paragon use wormhole 
routing in a 2D mesh. Finally, MIT’s 
research prototype J-machine uses 
wormhole routing in a 3D mesh. 

Deadlock 
Switching strategy and the routing 

algorithm used are among several fac- 
tors that affect communication latency. 
One situation that can postpone packet 
deliveryindefinitely is deadlock, inwhich 
a set of packets may become blocked 
forever in the network. Deadlock can 
occur if packets are allowed to hold 
some resources while requesting oth- 
ers. In store-and-forward and virtual 
cut-through switching, the resources are 
buffers. In circuit switching and worm- 
hole routing, the resources are chan- 
nels. Because blocked packets holding 
channels (and their corresponding flit 
buffers) remain in the network, worm- 
hole routing is particularly susceptible 
to deadlock. Figure 5 shows an example 
of channel deadlock involving four rout- 

ers and four packets. Each packet is 
holding a flit buffer while requesting 
the flit buffer being held by another 
packet. 

One way to solve the deadlock prob- 
lem is to allow the preemption of pack- 
ets involved in a potential deadlock 
situation. Preempted packets can be 
either rerouted or discarded. The former 
policy gives rise to adaptive nonmini- 
mal routing techniques. The latter pol- 
icy requires that the packets be recov- 
ered at the source and retransmitted. 
Because of requirements for low laten- 
cy and reliability, packet preemption is 
not used in most direct network archi- 
tectures. 

More commonly, deadlock is avoid- 
ed by the routing algorithm. By order- 
ing network resources and requiring 
that packets request and use these re- 
sources in strictly monotonic order, cir- 
cular wait - a necessary condition for 
deadlock - is avoided. Hence, dead- 
lock involving these resources cannot 
arise. 

In wormhole-routed networks, chan- 
nels are the critical resources. A chan- 
nel  dependence graph6 can be used to 
develop a deadlock-free routing algo- 
rithm. The channel dependence graph 
for a direct network and a routing algo- 
rithm is a directed graph D = G(C, E ) ,  
where the vertex set C(D)  consists of 
all the unidirectional channels in the 
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Figure 6. A four-node network and the corresponding channel dependence 
graphs: (a) a direct network with four nodes; (b) channel dependence graph; 
(c) channel dependence graph based on restricted minimal routing. 

network, and the edge set E ( D )  includes 
all the pairs of connected channels, as 
defined by the routing algorithm. In 
other words, if (cl ,  c,) E E ( D ) ,  then c, 
and c, are, respectively, an input chan- 
nel and an output channel of a node, 
and the routing algorithm may route 
packets from c, to  c,. A routing algo- 
rithm for a direct network is deadlock- 
free if and only if there is no cycle in the 
channel dependence graph.6 

Figure 6 demonstrates the channel 
dependence graph method. The four 
nodes shown in Figure 6a can be consid- 
ered as a ring, a 2 x 2 mesh, a 2-cube, a 

4-ary 1-cube, or a 2 x 2 torus. Assuming 
a packet can be delivered through any 
minimal routing path, the correspond- 
ing channel dependence graph is shown 
in Figure 6b. Since there are two cycles 
in the channel dependence graph, dead- 
lock is possible. One way to avoid dead- 
lock is to disallow packets to be for- 
warded from channel c, to c2 and from c, 
to c8. The resulting channel dependence 
graph is shown in Figure 6c. It can be 
easily verified that the routing is still 
minimal. However, to send a packet 
from node 0 to node 2, the packet must 
be forwarded through node 3, as the 

path through node 1 is no longer per- 
mitted. 

Deterministic routing 
One approach to designing a dead- 

lock-free routing algorithm for a worm- 
hole-routed network is to ensure that 
cycles are avoided in the channel de- 
pendence graph. This can be achieved 
by assigning each channel a unique num- 
ber and allocating channels to packets 
in strictly ascending (or descending) 
order. If the behavior of the algorithm 
is independent of current network con- 
ditions, it is deterministic. 

Dimension-ordered routing. A chan- 
nel numbering scheme often used in 
n-dimensional meshes is based on the 
dimension of channels. In dimension- 
ordered routing, each packet is routed 
in one dimension at a time, arriving at 
the proper coordinate in each dimen- 
sion before proceeding to the next di- 
mension. By enforcing a strictly mono- 
tonic order on the dimensions traversed, 
deadlock-free routing is guaranteed. 
Hypercube and2D mesh topologies each 
use a deadlock-free minimal determin- 
istic routing algorithm. Both algorithms 
are based on the concept of dimension 
ordering. 

In an n-cube, each node is represent- 
ed using an n-bit binary number. Each 
node has n outgoing channels, and the 
ith channel corresponds to the ith di- 
mension. In the E-cube routing algo- 
rithm, the packet header carries the 
destination node address d. When a node 
v in the n-cube receives a packet, the E- 
cube routing algorithm computes c = d 

c5 

I 

I 1 

I 

Figure 7. A five-node ring topology and channel dependence graphs: (a) 5-ary 1-cube (ring); (b) channel dependence 
graph; (c) channel dependence graph for deadlock-free nonminimal deterministic routing. 
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69 v, where 0 is the exclusive-OR oper- 
ation. If c = 0, the packet is forwarded to 
the local processor. Otherwise, thepack- 
et is forwarded on the outgoing channel 
in the kth dimension, where k is the 
position of the rightmost (alternatively, 
leftmost) 1 in c. 

In a 2D mesh, each node is represent- 
ed by its position (x, y )  in the mesh. In 
the XY routing algorithm, packets are 
sent first along the X dimension and 
then along the Y dimension. In other 
words, at most one turn is allowed, and 
that turn must be from thexdimension 
to the Y dimension. Let (sx, s,) and (dx,  
d,) denote the addresses of a source and 
destination node, respectively. Further- 
more, let (gx, g,) = (d, - s,, d, - s,). XY 
routing can be implemented by placing 
g, and gy in the first two flits, respective- 
ly, of the packet. When the first flit of a 
packet arrives at a router, it is decre- 
mented or incremented, depending on 
whether it is greater than 0 or less than 
0. If the result is not equal to 0, the 
packet is forwarded in the same dimen- 
sion and direction it arrived in. If the 
result equals 0 and the packet arrived 
on the Y dimension, the packet is deliv- 
ered to the local processor. If the result 
equals 0 and the packet arrived on the 
X dimension, the flit is discarded and 
the next flit is examined upon arrival. 
If that flit is 0, the packet is delivered 
to the local processor; otherwise, the 
packet is forwarded in the Y dimension. 
Using this method, the largest possible 
2D mesh with an 8-bit flit is 128 x 128. 
To construct a larger mesh, either the 
flit size must be increased or the flit 
buffer must be able to store multiple 
flits. 

Routing in general k-ary n-cubes. For 
k-ary n-cube topologies with k > 4, it is 
impossible to construct a deadlock-free 
minimal deterministic routing algorithm. 
This result is true even when n = 1, as 
illustrated by the one-dimensional ring 
topology shown in Figure 7a, where k = 
5. (The case of k = 4 was demonstrated 
in Figure 6, where deterministic mini- 
mal routing is possible.) Since only min- 
imal routing is allowed, there are two 
disjoint channel dependence graphs. 
Figure 7b shows one of these; recall that 
the vertices represent channels, as la- 
beled. To break the cycle, one of the 
edges must be deleted. However, in that 
case, minimal routing cannot be guar- 
anteed. For example, if the edge be- 
tween c2 and c3 is deleted, as shown in 

Figure 7c, then packets arriving at node 
2 on channel c2 cannot depart on chan- 
nel c3. Hence, packets sent from node 1 
to node 3 must take a nonminimal path. 
Thus, a deadlock-free nonminimal de- 
terministic routing algorithm is obtained. 
By using this technique, deadlock-free 
nonminimal deterministic routing algo- 
rithms can be developed for general k- 
ary n-cube topologies.6 

Adaptive routing 

The main disadvantage of determin- 
istic routing is that it cannot respond to 
dynamic network conditions, such as 
congestion. An adaptive routing algo- 
rithm for a wormhole-routed network, 
however, must address the deadlock is- 
sue. To do so often requires the use of 
additional channels; in particular, some 
adjacent nodes must be connected by 
multiple pairs of opposite unidirection- 
al channels. These pairs of channels may 
share one or more physical channels. 
The concept of virtual channels will be 
discussed later. To simplify the discus- 
sion, we will not distinguish between 
physical and virtual channels in this sec- 
tion. 

Minimal adaptive routing. One gen- 
eral adaptive routing technique works 
by partitioning the channels into dis- 
joint subsets. Each subset constitutes a 
corresponding subnetwork. Packets are 
routed through different subnetworks, 
depending on the location of destina- 
tion nodes. 

Figure 8 illustrates the application of 
this method to a 2D mesh. As Figure 8a 
shows, the mesh contains an additional 

pair of channels added to the Y dimen- 
sion. The network can be partitioned 
into two subnetworks called the +Xsub- 
network and the -X subnetwork, each 
having a pair of channels in the Y di- 
mension and a unidirectional channel 
in the X dimension. The +X subnet- 
work is shown in Figure 8b. If the desti- 
nation node is to the right of the source, 
that is, if d, > s,, the packet will be 
routed through the +X subnetwork. If 
d, i s,, the -X subnetwork is used. If d, 
= s,, the packet can be routed using 
either subnetwork. 

This double Y-channel routing algo- 
rithm is minimal and fully adaptive; that 
is, a packet can be delivered through 
any of the shortest paths. The algorithm 
can be proved to be deadlock-free by 
ordering the channels appr~priately.~ 
Such an ordering of the channels in the 
+X subnetwork is shown in Figure 8b. 
For any pair of source and destination 
nodes, the channels will be traversed in 
descending order, no matter which short- 
est paths are taken. Hence, deadlock 
cannot occur. In Figure 8b, for example, 
any of the minimal paths from node 
(1,O) to node (2,2) - specifically, (25, 
24,18), (25,17, 14), and (16, 15,14) - 
are valid. 

Providing deadlock-free minimal ful- 
ly adaptive routing algorithms for the 
hypercube, 2D torus, or more general 
k-ary n-cube topologies may require ad- 
ditional channels. Linder and Harden7 
have shown that a k-ary n-cube can be 
partitioned into 2"-' subnetworks, n + 1 
levels per subnetwork, and k" channels 
per level. The number of additional chan- 
nels increases rapidly with n. While this 
approach does provide minimal fully 
adaptive routing, the cost associated with 

Figure 8. Adaptive double Y-channel routing for a 2D mesh: (a) double 
Y-channel2D mesh; (b) +X subnetwork and labeling. 
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Figure 9. An illustration of the turn model in a 2D mesh: (a) abstract cycles in a 
2D mesh; (b) four turns (solid arrows) allowed in XY routing; (c) six turns (sol- 
id arrows) allowed in west-first routing. 

the additional channels makes it im- 
practical when n is large. 

Nonminimal adaptive routing. If min- 
imal routing is not required, deadlock- 
free adaptive routing can be provided 
using fewer additional channels. If r 
pairs of channels connect every pair of 
adjacent nodes, then the following non- 
minimal adaptive routing algorithms, 
proposed by Dally and Aoki,8 can be 
applied to k-ary n-cube and mesh topol- 
ogies. Both of these algorithms allow 
the packets to take a longer path if there 
is no shortest path with all its channels 
available. 

In the static dimension reversal rout- 
ing algorithm, there are r pairs of chan- 
nels between any two adjacent nodes. 
The network is partitioned into r sub- 
networks. The class-i (0 < i < r - 1) 
subnetwork consists of all the ith pair 
channels. The packet header carries an 
additional class field c initially set to 0. 
Packets with c < r - 1 can be routed in 
any direction in the class-c subnetwork; 
thus, the route may be nonminimal. 
However, each time a packet is routed 
from a high-dimensional channel to a 
low-dimensional channel, that is, reverse 

to the dimension ordering, the c field is 
increased by 1. Once the value of c has 
reached r - 1, the packet must use the 
deterministic dimension-ordered rout- 
ing described earlier for the remainder 
of the path. The additional channels 
allow a packet to be routed in reverse 
dimension order. The parameter r lim- 
its the number of times this can happen, 
and hence dictates the degree of adap- 
tivity of the routing algorithm. 

In the dynamic dimension reversal 
routing algorithm, the channels are di- 
vided into two nonempty classes: adap- 
tive and deterministic. Packets origi- 
nate in the adaptive channels, where 
they can be routed in any direction with 
no limit on the number of times the 
packet can be routed in reverse dimen- 
sion order. However, a packet with c = 
p is not allowed to wait on a channel 
currently occupied by a packet with c = 
q if p 2 q. A packet that reaches a node 
where all permissible output channels 
are occupied by packets whose values 
of c are less than or equal to its own 
must switch to the deterministic class of 
channels. When a packet enters the de- 
terministic channels, it must follow the 
dimension-ordered routing described 
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igure 10. Examples of west-first routing in an 8 x 8 2D mesh. 

earlier and cannot reenter the adaptive 
channels. Since it is impossible for a 
circular wait to occur among packets in 
the adaptive channels, because of the 
way cis used, it can be easily shown that 
the algorithm is deadlock-free. An im- 
portant design issue concerns how many 
channels are classified as adaptive and 
how many are deterministic between 
each pair of adjacent nodes. 

The turn model. Given a network 
topology and the associated set of chan- 
nels, adaptive routing algorithms are 
usually developed in an ad hoc way. The 
turn model proposed by Glass and Ni9 
provides a systematic approach to the 
development of maximally adaptive 
routing algorithms, both minimal and 
nonminimal, for a given network with- 
out adding channels. As Figure 5 shows, 
deadlock occurs because the packet 
routes contain turns that form a cycle. 
The following six steps can be used to 
develop maximally adaptive routing al- 
gorithms for n-dimensional meshes and 
k-ary n-cubes: 

(1) Classify channels according to the 
direction in which they route packets. 

(2) Identify the turns that occur be- 
tween one direction and another, omit- 
ting 0-degree and 180-degree turns. 

(3) Identify the simple cycles these 
turns can form. 

(4) Prohibit one turn in each cycle. 
( 5 )  In the case of k-ary n-cubes, in- 

corporate as many turns as possible that 
involve wraparound channels. 

(6) Add 180-degree and 0-degree 
turns, which are needed for nonmini- 
mal routing algorithms or if there are 
multiple channels in the same direction. 

The case of a 2D mesh illustrates the 
use of the turn model. There are eight 
possible turns and two possible abstract 
cycles, as shown in Figure 9a. Cycles 
among packets may result if the turns 
are not restricted, as illustrated in Fig- 
ure 5 .  The deterministic XY routing 
algorithm prevents deadlock by prohib- 
iting four of the turns, as shown in Fig- 
ure 9b. The remaining four turns cannot 
form a cycle, but neither do they allow 
any adaptiveness. 

The fundamental concept behind the 
turn model is to prohibit the smallest 
number of turns such that cycles are 
prevented. In fact, for a 2D mesh, only 
two turns need to be prohibited. Figure 
9c shows six turns allowed, suggesting 
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the corresponding west-first routing al- 
gorithm: First route a packet west, if 
necessary, and then adaptively south, 
east, and north. The two turns prohibit- 
ed in Figure 9c are the two turns to the 
west. Therefore, to travel west, apacket 
must begin in that direction. 

Figure 10 shows three example paths 
for the west-first algorithm. The chan- 
nels marked as unavailable are either 
faulty or being used by other packets. 
One of the paths shown is minimal, while 
the other two paths are nonminimal, 
resulting from routing around unavail- 
able channels. Because cycles are avoid- 
ed, west-first routing is deadlock-free. 
For minimal routing, the algorithm is 
fully adaptive if the destination is on the 
right-hand side (east) of the source; oth- 
erwise, it is deterministic. If nonmini- 
mal routing is allowed, the algorithm is 
adaptive in either case. There are other 
ways to select six turns so as to prohibit 
cycles, although the selection of the two 
prohibited turns is not a r b i t r a r ~ . ~  

By applying the turn model to the 
hypercube, an adaptive routing algo- 
rithm, namely P-cube routing, can be 
developed. Le t s  = on-,(s), oJs), . . . , 
oo(s) and d = on-l(d), on-2(d)r . . . , o,(d) 
be the source and destination nodes, 
respectively, in an n-cube. The set E 
consists of all the dimension numbers in 
which s and d differ. The size of E is the 
Hamming distance between s and d.  
Thus, i E E if q(s )  # o,(d). E is divided 
into two disjoint subsets, E,  and E,, 
where i E  E,if o,(s) = O  ando,(d) = 1, and 
j E E,  if q(s)  = 1 and o,(d) = 0. 

The fundamental concept of P-cube 
routingis to divide the routing selection 
into two phases. In the first phase, a 
packet is routed through the dimen- 
sions in E,, in any order. In the second 
phase, the packet is routed through the 
dimensions in E,. A similar algorithm 
was proposed by Konstantinidoulo; how- 
ever, the P-cube routing algorithm can 
be systematically generalized to handle 
nonminimal routing as wells9 

Routing in 
reconfigurable 
networks 

In the examples cited thus far, one or 
more routing algorithms have been de- 
veloped for each type of direct network 
topology. It is possible for the network 
topology itself to be reconfigurable. For 

example, by using basic building-block 
nodes such as Intel/CMU's iWarp cells 
or elements of the Transputer IMS T9000 
family, different network topologies can 
be constructed from a given set of com- 
ponents. In this case, the router must be 
flexible or programmable to allow for 
the implementation of different dead- 
lock-free routing algorithms. Two tech- 
niques are general enough to accommo- 
date any topology, given a specific 
routing algorithm for each topology, 
while permitting the router design to be 
relatively simple. 

Source routing. The first approach is 
source routing, mentioned earlier. De- 
pending on the underlying network to- 
pology, the source node specifies the 
routing path on the basis of a deadlock- 
free deterministic routing algorithm. The 
packet must carry complete routing in- 
formation in the packet header. Since 
the header itself must be transmitted 
through the network, thereby consum- 
ing network bandwidth, it is important 
to minimize header length. 

One source-routing method that 
achieves this goal is called street-sign 
routing. The header is analogous to a 
set of directions given to a driver in a 
city. Only the names of the streets that 
the driver must turn on, along with the 
direction of the turn, are needed. Street- 
sign routing is used in iWarp, where 
each router has four pairs of channels 
corresponding to four cardinal direc- 
tions (+X,-X, +Y,-Y). Bydefault,pack- 
ets arriving from the input channel in 
+X (or +Y) will be forwarded to the 
output channel in -X (or -Y), and vice 
versa. The source overrides this default 
by including in the header the addresses 
of all nodes at which a different action is 
to be taken. 

There are two possible actions. The 

packet has either reached the destina- 
tion or it must make a turn. For each 
turn, the header must contain the node 
address and the direction of the turn. 
Furthermore, this information must oc- 
cur in the header according to the order 
in which nodes are reached. Upon re- 
ceiving each header flit, the router com- 
pares the node address in the flit to the 
local node address. If they match, the 
packet either turns or is sent to the 
destination, as specified in the header 
flit; otherwise, the packet will be for- 
warded through the default output chan- 
nel. By incorporating the concept of a 
default direction, the packet header can 
be kept short, requiring less time to 
generate and transmit. An appropriate 
header-generation algorithm can be 
designed for each of the possible topol- 
ogies that may be configured. 

Table-lookup routing. Another ap- 
proach that is amenable to reconfigu- 
rable topologies is to perform routing 
by using table lookup. An obvious im- 
plementation is to place a lookup table 
at each node, with the number of entries 
in the table equal to the number of 
nodes in the network. Given a destina- 
tion node address carried in the header, 
the corresponding entry in the table 
indicates which outgoing channel should 
be used to forward the packet. Such an 
implementation is not practical, howev- 
er, because the size of the lookup table 
places an artificial upper bound on the 
network size, and the large table is inef- 
ficient in the use of chip area. 

One way to reduce the table size is to 
define a range of addresses to be asso- 
ciated with each outgoing channeL5 
For example, each node of the 4 x 3 2D 
mesh shown in Figure l l a  is assigned a 
label ! ( x ,  y ) .  Consider the node ( l , l ) ,  
which is labeled 4. Let d be the label of 

Figure 11. The labeling of a 4 x 3 mesh: (a) physical network; (b) high-channel 
network; (c) low-channel network. 
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Figure 12. Four virtual channels share a unidirectional physical channel. 

the destination address in a packet. Each 
routing table requires only four entries, 
one for each outgoing channel. For ex- 
ample, the routing table at node (1,l) 
will contain the following information. 
Ford 2 7, the packet will be routed using 
the +Y channel. For 5 I d < 7 , l  < d I 3, 
and d I 1, the packet will be routed 
through channels -X, +X, and -Y, re- 
spectively. 

In table-lookup routing, the most 
important issue is how to assign appro- 
priate labels to  nodes so that minimal, 
deadlock-free routing results. One such 
strategy for a 2 D  mesh topology with N 
nodes assigns a label to each node on 
the basis of its position in a particular 
Hamiltonian path of the network graphs; 
the first node in the path is labeled 0, 
and the last node in the path is labeled 
N -  1. A label assignment function 1 for 
an m x n mesh that results in minimal 
routing is 

y * n + x  if y is even 
1(X3Y)={ y*n+n-x-1  i fyisodd 

This labeling effectively divides the net- 
work into two subnetworks, shown in 
Figures l l b  and l l c .  The high-channel 
subnetwork contains all of the channels 
whose direction is from lower labeled 
nodes to higher labeled nodes, and the 
low-channel subnetwork contains all of 
the channels whose direction is from 
higher labeled nodes to lower labeled 
nodes. Since both subnetworks are acy- 
clic, it is easily shown that this table- 
lookup routing algorithm is deadlock- 
free. 

A deadlock-free table-lookup rout- 

ing algorithm for the hypercube is also 
given by Lin and NLS For the hyper- 
cube, the label assignment function ! 
for a node with address dn-l d,,-, . . . do is 

n-1 
!(d,z-ld,z-2 ... d o ) =  ~ ( c r & 2 ' + T i d i 2 ' )  

r=O 

where c,,-~ = 0, ctz-, = d,,-, 0 dn-* 0 . . . 0 
d,!-,+, for 1 < j I n. A similar technique is 
used in the Inmos IMS T9000 transput- 
er, where it is referred to as interval 
labeling. 

Virtual channels 

Some adaptive routing algorithms 
require multiple pairs of channels be- 
tween adjacent nodes. Implementing 
each channel in a wormhole-routed net- 
work with a separate set of physical 
wires is very expensive. Furthermore, 
in most applications the channel utiliza- 
tion is not high. One way to address this 
problem is to multiplex several virtual 
channels on a single physical communi- 
cation channel. Each virtual channel 
has its own flit buffer, control, and data 
path." In some designs, such as those of 
the Intel Touchstone and Intel/CMU 
iWarp, several unidirectional channels 
in the same direction share a single phys- 
ical unidirectional channel; in other 
 design^,^ unidirectional virtual channels 
in opposite directions share a physical 
bidirectional channel. 

Through virtual channels, a physical 
network can be divided into multiple 
disjoint logical networks, thereby facil- 

itating adaptive routing algorithms. Vir- 
tual channels are useful in three other 
ways. First, by increasing the degree of 
connectivity in the network, they facil- 
itate the mapping onto aparticularphys- 
ical topology of applications in which 
processes communicate according to 
another logical topology. For example, 
an application in which processes com- 
municate according to a hexagonal ar- 
ray can be mapped onto a 2D mesh. 
Second, even when the application and 
the architecture have the same topolo- 
gy, extra connections may still be need- 
ed to route around congested or faulty 
nodes. Third, virtual channels provide 
the ability to  deliver guaranteed com- 
munication bandwidth to certain class- 
es of packets. For example, it is impor- 
tant that some bandwidth be reserved 
to support system-related functions, such 
as debugging, monitoring, and system 
diagnosis. By time-multiplexing virtual 
channels onto physical channels using a 
fair schedule, availability of some min- 
imum bandwidth can be guaranteed to 
each virtual channel as long as the num- 
ber of virtual channels sharing the same 
physical channel is bounded. 

The most important issue concerning 
virtual channels is the multiplexing and 
arbitration of a physical channel among 
many virtual channels. The multiplex- 
ing technique should be designed to 
maximize channel utilization. Specifi- 
cally, if m virtual channels share a phys- 
ical channel with bandwidth W, and k 
virtual channels are active, where 1 I k 
5 m, then each active virtual channel 
should have an effective bandwidth of 
Wlk. Since the number of active virtual 
channels is a function of time, the rout- 
er should be able to dynamically allo- 
cate channel bandwidth to the active 
virtual channels. 

Figure 12 illustrates the sharing of 
four virtual channels over a unidirec- 
tionalphysical channel. A dedicated sin- 
gle-bit Request/Acknowledge wire ex- 
ists between an input virtual channel 
and an output virtual channel of two 
adjacent nodes, as shown in Figure 4. 
The scheduler multiplexes data from 
the virtual channels over the physical 
channel. A fair scheduling discipline, 
such as round-robin, can be used. To 
preserve bandwidth, only those virtual 
channels that have a nonempty flit buff- 
er at the sending side and a nonfull flit 
buffer at the receiving side may partic- 
ipate in the scheduling decision. In oth- 
er words, among all of the low RIA 
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lines, the scheduler on the sending side 
will decide which output channel with a 
nonempty flit buffer can raise its RIA 
line to high and use the physical chan- 
nel. 

Using a pair of opposite unidirection- 
al channels between two adjacent nodes 
simplifies control. However, if these two 
unidirectional channels are not fully 
utilized, one may be busy while the oth- 
er is idle. Combining two unidirectional 
channels into a single bidirectional chan- 
nel will increase channel utilization. 
Assuming the bandwidth of each unidi- 
rectional channel is B, the bandwidth of 
the corresponding bidirectional chan- 
nel will be 2B. If only one of the nodes 
has packets to transmit, it can use the 
full bandwidth. The design of a bidirec- 
tional channel must provide a fair and 
efficient arbitration scheme between two 
sides. One such arbitration method is 
based on the concept of token passing: 
in which a single-bit arbitration line is 
used to transfer control of the channel 
between two adjacent nodes. 

The virtual channel concept is not 
without drawbacks. As the number of 
virtual channels increases, the schedul- 
ing becomes more complicated, requir- 
ing additional hardware complexity and 
potentially increasing network latency. 
The sharing of bandwidth may also in- 
crease latency. Consider the following 
scenario in which a communication path 
traverses multiple physical channels, 
each of which supports many virtual 
channels. If the bandwidth of eachphys- 
ical channel is Wand there is no sharing 
with other virtual channels, the effec- 
tive bandwidth of the communication 
path is W. On the other hand, if one of 
the physical channels along the path is 
shared with three other packets, that 
channel becomes a bottleneck and the 
effective bandwidth of the entire path is 
reduced to W14, even though the avail- 
able bandwidth of all other channels in 
the path is W. The trade-off between 
increased network throughput and long- 
er communication latency should be 
considered when deciding whether to 
use virtual channels. 

Open issues 
As we have described, wormhole rout- 

ing algorithms have already been sub- 
jected to extensive research. However, 
we should briefly mention several relat- 
ed topics that have only recently re- 

ceived attention from the research com- 
munity. 

The primary research tools used thus 
far to study the performance of worm- 
hole routing algorithms have been anal- 
ysis and simulation, in which either 
uniform or generic parameterized 
workloads have been used to evaluate 
routing algorithms. To account for the 
characteristics of specific application 
software, traces of communication in 
actual parallel programs must be incor- 
porated into such models. More research 
is needed in this direction before a real- 
istic and practical performance com- 
parison study on the algorithms pre- 
sented in this article can be conducted. 
In addition, researchers need simula- 
tion programs that efficiently model 
variations of wormhole routing, includ- 
ing virtual channels, large flit buffers, 
and sophisticated input and output se- 
lection policies. 

A major goal in the design of direct 
networks is to minimize the constituent 
elements of communication latency so 
that such systems can support a finer 
grain of parallelism. Start-up latency, 
which may include time for memory 
and buffer coping, can significantly de- 
grade performance. Methods to reduce 
start-up latency deserve further investi- 
gation, although significant progress in 
this area has been reported recently. 
The MIT J-machine uses special hard- 
ware to achieve a start-up latency of 2 
microseconds, and the Ncube-3 is 
claimed to exhibit a start-up latency of 
5 microseconds. 

A related issue concerns the number 
of internal channels connecting the lo- 
cal processor/memory to the router. 
Most commercial multiprocessors sup- 
port a single pair of internal channels, 
which may become a bottleneck for 
packets entering and leaving the direct 
network. One system that supports 
multiple pairs of internal channels is the 
Intel/CMU iWarp. The appropriate 
number of internal channels and their 
cost/performance trade-offs require fur- 
ther study. 

Since the normal behavior of worm- 
hole-routed networks is still a subject of 
intense research, this article has not 
addressed the issues of fault tolerance 
or reliable routing, which are desirable 
in highly reliable systems. The tradi- 
tional “replace-and-reboot’’ approach 
is used in most existing direct network 
systems. Investigation of routing and 
flow control methods for injured worm- 

hole-routed direct networks will likely 
receive much attention when research 
in this area becomes more mature and 
demand increases for highly reliable 
parallel computing environments. 

Finally, this article has surveyed rout- 
ing algorithms for single-destination, or 
unicast, communication. Another area 
of intensive research concerns one-to- 
many, or multicast, communication. 
Broadcast is a special case of multicast 
in which a message is delivered to all 
nodes in the network. Efficient multi- 
cast communication has been shown to 
be useful in applications such as parallel 
simulation and parallel search, as well 
as in operations such as replication and 
barrier synchronization, found in data 
parallel languages. Ongoing research 
concerning multicast communication in 
wormhole-routed systems includes the 
study of deadlock-free, hardware-sup- 
ported multicast routing algorithms5 and 
software-based multicast communica- 
tion.12 In spite of these efforts, much of 
the wormhole multicast problem, espe- 
cially performance evaluation of multi- 
cast protocols under actual workloads, 
remains open to study. 

D irect network architectures are 
strong candidates for use in 
massively parallel computers, 

as evidenced by many successful com- 
mercial and experimental multicomput- 
ers and scalable shared-memory multi- 
processors. The characteristics of direct 
networks, as reflected by the communi- 
cation latency metric, are critical to the 
performance of such systems. Worm- 
hole routing, the most promising switch- 
ing technique, has been adopted in sev- 
eral new massively parallel computers. 
However, wormhole routing also raises 
unique technical challenges in routing 
and flow control - in particular, the 
development of routing algorithms that 
avoid deadlock. The problem is compli- 
cated by the need for adaptive routing 
and reconfigurable topologies. We have 
tried to elucidate such issues while sur- 
veying various strategies that have been 
used or proposed to address them. 
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