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A s we slowly approach the physical limits of processor and memory speed, 
it is becoming more attractive to use multiprocessors to increase comput- 
ing power. Two kinds of parallel processors have become popular: tightly 

coupled shared-memory multiprocessors and distributed-memory multiproces- 
sors. A tightly coupled multiprocessor system - consisting of multiple CPUs and 
a single global physical memory - is more straightforward to program because it 
is a natural extension of a single-CPU system. However, this type of multiprocessor 
has a serious bottleneck: Main memory is accessed via a common bus - a 
serialization point - that limits system size to tens of processors. 

Distributed-memory multiprocessors, however, do not suffer from this draw- 
back. These systems consist o fa  collection of independent computers connected by 
a high-speed interconnection network. If designers choose the network topology 
carefully, the system can contain many orders of magnitude more processors than 
a tightly coupled system. Because all communication between concurrently exe- 
cuting processes must be performed over the network in such a system, until 
recently the programming model was limited to a message-passing paradigm. 
However, recent systems have implemented a shared-memory abstraction on top 
of message-passing distributed-memory systems. The shared-memory abstraction 
gives these systems the illusion of physically shared memory and allows program- 
mers to use the shared-memory paradigm. 

As Figure 1 shows, distributed shared memory provides a virtual address space 
shared among processes on loosely coupled processors. The advantages offered by 
DSM include ease of programming and portability achieved through the shared- 
memory programming paradigm, the low cost of distributed-memory machines, 
and scalability resulting from the absence of hardware bottlenecks. 

DSM has been an active area of research since the early 1980s, although its 
foundations in cache coherence and memory management have been extensively 
studied for many years. DSM research goals and issues are similar to those of 
research in multiprocessor caches or networked file systems, memories for nonuni- 
form memory access multiprocessors, and management systems for distributed or 
replicated databases.' Because of this similarity, many algorithms and lessons 
learned in these domains can be transferred to DSM systems and vice versa. 

Distributed shared- 
memory systems 

implement the shared- 
memory abstraction On 

multicomputer 
architectures, 
combining the 

scalability of network- 
based architectures 

with the convenience Of 

shared-memory 
programming. 
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However, each of the above systems has 
unique features (such as communica- 
tion latency), so each must be consid- 
ered separately. 

The advantages of DSM can be real- 
ized with reasonably low runtime over- 
head. DSM systems have been imple- 
mented using three approaches (some 
systems use more than one approach): 

(1) hardware implementations that 
extend traditional caching tech- 
niques to scalable architectures. 

(2) operat ing system and library 
implementations that achieve 
sharing and coherence through 
virtual memory-management  
mechanisms, and 

(3) compiler implementations where 
shared accesses are automatically 
converted into synchronization 
and coherence primitives. 

These systems have been designed on 
common networks of workstations or  
minicomputers, special-purpose mes- 
sage-passing machines (such as the 
Intel iPSCI2), custom hardware, and 
even heterogeneous systems. 

This article gives an integrated over- 
view of important DSM issues: memory 
coherence, design choices, and imple- 
mentation methods. In our presenta- 
tion, we use examples from the DSM 
systems listed and briefly described in 
the sidebar on page 55. Table 1 com- 
pares how design issues are handled in a 
selected subset of the systems. 

Design choices 

A DSM system designer must make 
choices regarding structure, granulari- 
ty, access, coherence semantics, scal- 
ability, and heterogeneity. Examination 
of how designers handled these issues in 
several real implementations of DSM 
shows the intricacies of such a system. 

Structure and granularity. The struc- 
ture and granularity of a DSM system 
are closely related. Structure refers to 
the layout of the shared data in mem- 
ory. Most DSM systems d o  not struc- 
ture memory (it is a linear array of 
words), but some structure the data as 
objects, language types, or even an as- 
sociative memory. Granularity refers to 
the size of the unit of sharing: byte, 
word, page, or complex data structure. 

Ivy,’one of the first transparent DSM 
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Figure 1. Distributed shared memory. 

systems, implemented shared memory 
as virtual memory. This memory was 
unstructured and was shared in 1-Kbyte 
pages. In systems implemented using 
the virtual memory hardware of the 
underlying architecture, it is convenient 
to choose a multiple of the hardware 
page size as the unit of sharing. Mirage’ 
extended Ivy’s single shared-memory 
space to support a paged segmentation 
scheme. Users share arbitrary-size re- 
gions of memory (segments) while the 
system maintains the shared space in 
pages. 

Hardware implementations of DSM 
typically support smaller grain sizes. For 
example, Dash4 and Memneti also sup- 
port unstructured sharing, but the unit 
of sharing is 16 and 32 bytes respec- 
tively -typical cache line sizes. Plush is 
somewhat of a hybrid: The unit of rep- 
lication is a page, while the unit of co- 
herence is a 32-bit word. 

Because shared-memory programs 
provide locality of reference, a process 
is likely to access a large region of its 
shared address space in a small amount 
of time. Therefore. larger “page” sizes 
reduce paging overhead. However, shar- 
ing may also cause contention, and the 
larger the page size, the greater the 
likelihood that more than one process 
will require access to  a page. A smaller 
page reduces the possibility offalseshar- 
ing, which occurs when two unrelated 
variables (each used by different pro- 
cesses) are  placed in the same page. The 
page appears shared, even though the 

original variables were not. Another 
factor affecting the choice of page size is 
the need to keep directory information 
about the pages in the system: the small- 
er  the page size. the larger the directory. 

A method of structuring the shared 
memory is by data type. With this 
method. shared memory is structured 
a s  objects in dis t r ibuted object- 
oriented systems, as in the Emerald, 
Choices, and Clouds’ systems; or  it is 
structured as variables in the source 
language. as in the Shared Data-Object 
Model and Munin systems. Because with 
these systems the sizes of objects and 
data types vary greatly, the grain size 
varies to match the application. How- 
ever, these systems can still suffer from 
false sharing when different parts of an 
object (for example, the top and bottom 
halves of an array) are accessed by dis- 
tinct processes. 

Another method is t o  structure the 
shared memory like a database. Linda,8 
a system that has such a model, orders 
its shared memory as an associative 
memory called a tuplespace. This struc- 
ture allows the location of data to be 
separated from its value, but it also re- 
quires programmers to use special ac- 
cess functions to interact with the shared- 
memory space. In most other systems, 
access to  shared data is transparent. 

Coherence semantics. For program- 
mers to write correct programs on a 
shared-memory machine, they must 
understand how parallel memory up- 
dates are propagated throughout the 
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Table 1. DSM design issues. 

System Current Structure Coherence Coherence Sources of Support Hetero- 
Name Implementation and Semantics Protocol Improved for Synchro- geneous 

Granularity Performance nization Support 

Dash Hardware, 16 bytes 
modified Silicon 
Graphics Iris 
4D/340 worksta- 
tions, mesh 

Ivy Software, Apollo 1-Kbyte 
workstations, pages 
Apollo ring, 
modified Aegis 

Linda Software, Tuples 
variety of 
environments 

token ring 
Memnet Hardware, 32 bytes 

Mermaid Software, Sun 8 Kbytes 
workstations (Sun), 
DEC Firefly 1 Kbyte 
multiprocessors, (Firefly) 
Mermaidhative 
operating system 

Mirage Software, VAX 512-byte 
11/750, Ether- pages 
net, Locus dis- 
tributed operat- 
ing system, Unix 
System V interface 

Munin Software, Sun Objects 
workstations, 
Ethernet, Unix 
System V kernel 
and Presto paral- 
lel programming 
environment 

Plus Hardware and Page for 
software, sharing, 
Motorola 88000, word for 
Caltech mesh, coherence 
Plus kernel 

Intel iPSC/2, pages 
hypercube, 
Shivafnative 
operating system 

Shiva Software, 4-Kbyte 

Release 

Strict 

No 
mutable 
data 
Strict 

Strict 

Strict 

Weak 

Processor 

Strict 

Write- 
invalidate 

Write- 
invalidate 

Varied 

Write- 
invalidate 

Write- 
invalidate 

Write- 
invalidate 

Type-specific 

Relaxed Queued locks, No 
coherence. atomic incre- 
prefetching mentation and 

decrementation 

Pointer chain Synchronized No 
collapse, selec- pages, sema- 
tive broadcast phores, event 

counts 
Hashing 

Vectored in- 
terrupt support 
of control flow 

Messages fa 
semaphores 
and signal/ 
wait 

Kernel-level 
implementa- 
tion, time 
window 
coherence 
protocol 
Delayed 

(delayed write update 
update for queue 
read-mostly 
protocol) 

Nondemand Delayed 
write-update operations 

? 

No 

Yes 

Unix System V No 
semaphores 

Synchronized No 
objects 

C o m p 1 ex 
synchronization 
instructions 

No 

Write- Data structure Messages for No 
invalidate compaction, semaphores 

memory as and signal/ 
backing store wait 

system. The most intuitive semantics 
for memory coherence is strict consis- 
tency. (Although “Coherence” and “con- 
sistency” are  used somewhat inter- 
changeably in the literature, we use 
coherence as the general term for the 

semantics of memory operations, and 
consistency to  refer to  a specific kind of 
memory coherence.) In a system with 
strict consistency, a read operation re- 
turns the most recently written value. 
However, “most recently” is an ambig- 

uous concept in a distributed system. 
For this reason, and to  improve perfor- 
mance, some DSMsystems provide only 
a reduced form of memory coherence. 
For example, Plus provides processor 
consistency, and Dash provides only 
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release consistency. In accordance with 
the RISC philosophy, both of these sys- 
tems have mechanisms for forcing co- 
herence, but their use must be explicitly 
specified by higher level software (a 
compiler) or  perhaps even the program- 
mer. 

Relaxed coherence semantics allows 
more efficient shared access because it 
requires less synchronization and less 
datamovement. However, programs that 
depend on a stronger form of coherence 
may not perform correctly if executed 
in a system that supports only a weaker 
form. Figure 2 gives brief definitions of 
strict, sequential, processor, weak, and 
release consistency, and illustrates the 
hierarchical relationship among these 
types of coherence. Table 1 indicates 
the coherence semantics supported by 
some current DSM systems. 

Figure 2. Intuitive definitions of mem- 
ory coherence. The arrows point from 
stricter to weaker consistencies. 

DSM systems 

A read returns the most recently written value 

The result of any execution appears as some 
interleaving of the operations of the individual 
nodes when executed on a multithreaded 
sequential machine. 

Processor consistency 
Writes issued by each individual 
node are never seen out of order, 
but the order of writes from two 
different nodes can be observed 
differently. 

I I 
\ 

. 
Weak consistency 

The programmer enforces con- 
sistency using synchronization 
operators guaranteed to be 
sequentially consistenf. 

J 
Release consistency 

Weak consistency with two types of synchron- 
ization operators: acquire and release. Each 
type of operator is guaranteed to be processor 
consistent. 

This partial listing gives the name of the DSM system, the princi- 
pal developers of the system, the site and duration of their research, 
and a brief description of the system. Table 1 gives more informa- 
tion about the systems followed with an asterisk. 

1987- ): A heterogeneous DSM system that allows data structures 
to be shared across machines. Agora was the first system to sup- 
port weakconsistency. 

Amber (Chase, Feeley, and Levy, University of Washington, 
1988-): An object-based DSM system in which sharing is performed 
by migrating processes to data as well as data to processes. 

Capnet (Tam and Farber, University of Delaware, 1990-): An ex- 
tension of DSM to a wide area network. 

Choices (Johnston and Campbell, University of Illinois, 
1988-): DSM incorporated into a hierarchical object-oriented distrib- 
uted operating system. 

Clouds (Ramachandran and Khalidi, Georgia Institute of Tech- 
nology, 1987- ): An object-oriented distributed operating system 
where objectscan migrate. 

Dash' (Lenoski, Laudon, Gharachorloo, Gupta, and Hennessy, 
Stanford University, 1988-): A hardware implementation of DSM 
with a directory-based coherence protocol. Dash provides release 
consistency. 

Emerald (Jul, Levy, Hutchinson, and Black, University of Wash- 
ington, 1986-1 988): An object-oriented language and system that 
indirectly supports DSM through object mobility. 

Ivy' (Li, Yale University, 1984-1986): An early page-oriented 
DSM ona networkof Apolloworkstations. 

Agora (Bisiani and Forin, Carnegie Mellon University, 

Linda* (Carrier0 and Gelernter, Yale University, 1982-): A 
shared associative object memory with access functions. Linda can 
be implemented for many languages and machines. 

Memnet' (Delp and Farber, University of Delaware, 1986-1 988): 
A hardware implementation of DSM implemented on a 200-Mbps 
token ring used to broadcast invalidates and read requests. 

and Princeton University, 1988-1 991): A heterogeneous DSM sys- 
tem where the compiler forcesshared pages to contain a single 
data type. Type conversion is performed on reference. 

Bowie, Md., 1990-): A transparent DSM built on SunOS 4.0. 
Mether allows applications to access an inconsistent state for 
efficiency. 

Mirage' (Fleisch and Popek, University of California at Los 
Angeles, 1987-1989): A kernel-level implementation of DSM. 
Mirage reduces thrashing by prohibiting a page from being sto- 
len before a minimum amount of time (A) has elapsed. 

Munin' (Bennett, Carter, and Zwaenepoel, Rice University, 
1989- ): An object-based DSM system that investigates type- 
specific coherence protocols. 

Plus* (Bisiani and Ravishankar, Carnegie Mellon University, 
1988- ): A hardware implementation of DSM. Plus uses a write- 
update coherence protocol and performs replication only by pro- 
gram request. 

Shared Data-Object Model (Bal, Kaashoek, and Tannen- 
baum, Vrije University, Amsterdam, The Netherlands, 1988- ): A 
DSM implementation on top of the Amoeba distributed operat- 
ing system. 

Shiva' (Li and Schaefer, Princeton University, 1988- ): An 
Ivy-like DSM system for the Intel iPSCl2 hypercube. 

Mermaid* (Stumm, Zhou, Li, and Wortman, University of Toronto 

Mether (Minnich and Farber, Supercomputing Research Center, 
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Scalability. A theoretical benefit of 
DSM systems is that they scale better 
than tightly coupled shared-memory 
multiprocessors. The limits of scal- 
ability are greatly reduced by two fac- 
tors: central bottlenecks (such as the 
bus of a tightly coupled shared-  
memory multiprocessor), and global 
common knowledge operations and 
storage (such as broadcast messages or 
full directories, whose sizes are pro- 
portional to the number of nodes). 

Li and Hudak2 went through several 
iterations to refine a coherence proto- 
col for Ivy before arriving at their dy- 
namic distributed-manager algorithm, 
which avoids centralized bottlenecks. 
However, Ivy and most other DSM 
systems are currently implemented on 
top of Ethernet (itself a centralized 
bottleneck), which can support only 
about 100 nodes at a time. This limita- 
tion is most likely a result of these 
systems being research tools rather than 
an indication of any real design flaw. 
ShivaY is an implementation of DSM 
on an Intel iPSCR hypercube, and it 
should scale nicely. Nodes in the Dash 
system are connected on two meshes. 
This implies that the machine should 
be expandable, but the Dash proto- 
type is currently limited by its use of a 
full bit vector (one bit per node) to 
keep track of page replication. 

Heterogeneity. At first glance, shar- 
ing memory between two machines with 
different architectures seems almost 
impossible. The machinesmay not even 
use the same representation for basic 
data types (integers, floating-point 
numbers, and so on). It is a bit easier if 
the DSM system is structured as vari- 
ables or objects in the source language. 
Then a DSM compiler can add conver- 
sion routines to all accesses to shared 
memory. In Agora, memory is struc- 
tured as objects shared among hetero- 
geneous machines. 

Mermaidlo explores another novel 
approach: Memory is shared in pages, 
and a page can contain only one type of 
data. Whenever a page is moved be- 
tween two architecturally different sys- 
tems, a conversion routine converts 
the data in the page to the appropriate 
format. 

Although heterogeneous DSM might 
allow more machines to participate in 
a computation, the overhead of con- 
version seems to outweigh the bene- 
fits. 
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Implementation 

A DSM system must automatically 
transform shared-memory access into 
interprocess communication. This re- 
quires algorithms to locate and access 
shared data, maintain coherence, and 
replace data. A DSM system may also 
have additional schemes to improve per- 
formance. Such algorithms directly sup- 
port DSM. In addition,DSM implement- 
ers  must tailor operat ing system 
algorithms to support process synchro- 
nization and memory management. We 
focus on the algorithms used in Ivy, Dash, 
Munin, Plus, Mirage, and Memnet be- 
cause these systems illustrate most of 
the important implementation issues. 
Stumm and Zhou’ give a good evolu- 
tionary overview of algorithms that sup- 
port static, migratory, and replicated 
data. 

Data location and access. To share 
data in a DSM system, a program must 
be able to find and retrieve the data it 
needs. If data does not move around in 
the system - it resides only in a single 
static location - then locating it is easy. 
All processes simply “know” where to 
obtain any piece of data. Some Linda 
implementations use hashing on the tu- 
ples to distribute data statically. This 
has the advantages of being simple and 
fast, but may cause a bottleneck if data is 
not distributed properly (for example, 
all shared data ends up on a single node). 

An alternative is to allow data to mi- 
grate freely throughout the system. This 
allows data to be redistributed dynami- 
cally to where it is being used. However, 
locating data then becomes more diffi- 
cult. In this case, the simplest way to 
locate data is to have a centralized 
server that keeps track of all shared 
data. The centralized method suffers 
from two drawbacks: The server serial- 
izes location queries, reducing parallel- 
ism, and the server may become heavily 
loaded and slow the entire system. 

Instead of using a centralized server, a 
system can broadcast requests for data. 
Unfortunately, broadcasting does not 
scale well. All nodes - not just the 
nodes containing the data - must pro- 
cess a broadcast request. The network 
latency of a broadcast may also require 
accesses to take a long time to complete. 

To avoid broadcasts and distribute 
the load more evenly, several systems 
use an owner-based distributed scheme. 

_ -  

This scheme is independent of data rep- 
lication, but is seen mostly in systems 
that support both data migration and 
replication. Each piece of data has an 
associated owner - a node with the 
primary copy of the data. The owners 
change as the data migrates through the 
system. When another node needs a copy 
of the data, it sends a request to the 
owner. If the owner still has the data, it 
returns the data. If the owner has given 
the data to some other node, it forwards 
the request to the new owner. 

The drawback with this scheme is that 
a request may be forwarded many times 
before reaching the current owner. In 
some cases, this is more wasteful than 
broadcasting. In Ivy, all nodes involved 
in forwarding a request (including the 
requester) are given the identity of the 
current  owner.  This collapsing of 
pointer chains helps reduce the forward- 
ing overhead and delay. 

When it replicates data, a DSM sys- 
tem must keep track of the replicated 
copies. Dash uses a distributed directo- 
ry-based scheme, implemented in hard- 
ware. The Dash directory for a given 
cluster (node) keeps track of the physi- 
cal blocks in that cluster. Each block is 
represented by a directory entry that 
specifies whether the block is unshared 
remote (local copy only), shared remote,  
or shared dirty. If the block is shared 
remote, the directory entry also indi- 
cates the location of replicated copies of 
the block. If the block is shared dirty, the 
directory entry indicates the location of 
the single dirty copy. Only the special 
node known as the h o m e  cluster posses- 
ses the directory block entry. A node 
accesses nonlocal data for reading by 
sending a message to the home cluster. 

Ivy’s dynamic distributed scheme also 
supports replicated data. A ptable on 
each node contains for each page an 
entry that indicates the probable loca- 
tion for the referenced page. As de- 
scribed above, a node locates data by 
following the chain of probable owners. 
The copy-list scheme implemented by 
Plus uses a distributed linked list to keep 
track of replicated data. Memory refer- 
ences are mapped to the physically clos- 
est copy by the page map table. 

Coherence protocol. All DSM systems 
provide some form of memory coher- 
ence. If the shared data is not replicated, 
then enforcing memory coherence is triv- 
ial. The underlying network automati- 
cally serializes requests in the order they 
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cwrite request (read-exclusive)> 

I I I 

I 1 <invalidate request> I 1 pq-=j--I I 
remote 

Cluster A 
(home cluster) 

(a) 

cwrite request (read-exclusive)> 

J 

DC sends ack- 0 nowledgment 
to new owner. 

------l 
<invalidate 

ackno wledgmenb 

0 DC forwards / 
request to 

owner cluster. 

New directory @ block entry: 

Cluster A 
(home cluster) 

Cluster B Cluster C 
(requesting cluster) 

cackz 

CPU issues 0 write (read- 
exclusive to home 
cluster. 

@Write completes 

-z 

Cluster B 
(requesting cluster) 

<ownership 
update> 

I 

DC sends data - @to and ownership requester up 

date message to 
home node. 

Cluster C 
(owner cluster) 

Figure 3. Simplified Dash write-invalidate protocol: (a) Data is shared remote; (b) data is dirty remote (after events de- 
picted in Figure 3a). (DC stands for directory controller.) 

occur. A node handling shared data can 
merely perform each request as it is 
received. This method will ensure strict 
memory consistency - the strongest 
form of coherence. Unfortunately, seri- 
alizing data access creates a bottleneck 
and makes impossible a major advan- 
tage of DSM: parallelism. 

To increase parallelism, virtually all 
DSM systems replicate data. Thus, for 
example, multiple reads can be per- 
formed in parallel. However, replica- 
tion complicates the coherence proto- 
col. Two types of protocols - 
write-invalidate and write-update pro- 
tocols - handle replication. In a write- 
invalidate protocol, there can be many 

copies of a read-only piece of data, but 
only one copy of a writable piece of 
data. The protocol is called write- 
invalidate because it invalidates all cop- 
ies of a piece of data except one before 
a write can proceed. In a write-update 
scheme, however, a write updates all 
copies of a piece of data. 

Most DSM systems have write- 
invalidate coherence protocols. All the 
protocols for these systems are similar. 
Each piece of data has a status tag that 
indicates whether the data is valid, 
whether it is shared, and whether it is 
read-only or writable. For a read, if the 
data is valid, it is returned immediately. 
If the data is not valid, a read request is 

sent to the location of a valid copy, and 
a copy of the data is returned. If the data 
was writable on another node, this read 
request will cause it to become read- 
only. The copy remains valid until an 
invalidate request is received. 

For a write, if the data is valid and 
writable, the request is satisfied imme- 
diately. If the data is not writable, the 
directory controller sends out an invali- 
date request, along with a request for a 
copy of the data if the local copy is not 
valid. When the invalidate completes, 
the data is valid locally and writable, 
and the original write request may com- 
plete. 

Figure 3 illustrates the Dash directory- 
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<update> 

7 

<update> i:: 
to master no&. 

update message io 
next copy. 

Node B \ Node A 
cwrite request> 

/ 
w l  6 MCM updates x. 

/ 

Figure 4. The Plus write-update 
protocol. (MCM stands for 

Page map table 

write request to 
remote node 6. 

memory coherence manager.) Node D 

based coherence protocol. The sequence 
of events and messages shown in Figure 
3a occurs when the block to be written 
is in shared-remote state (multiple read- 
only copies on nodes A and B )  just 
before the write. Figure 3b shows the 
events and messages that occur when 
the block to be written is in shared-dirty 
state (single dirty copy on node C) just 
before the write. In both cases. the ini- 
tiator of the write sends a request to the 
home cluster. which uses the informa- 
tion in the directory to locate and trans- 
fer the data and to invalidate copies. 
Lenoski et  a1.l give further details about 
the Dash coherence protocol and the 
methods they used to fine-tune the pro- 
tocol for high performance. 

Li and Hudak’ show that the write- 
invalidate protocol performs well for a 
variety of applications. In fact. they show 
superlinear speedups for a linear equa- 
tion solver and a three-dimensional par- 
tial differential equation solver, result- 
ing from the increased overall physical 
memory and cache sizes. Li and Hudak 
rejected use of a write-update protocol 
at  the onset with the reasoning that 
network latency would make it ineffi- 
cient. 

Subsequent research indicates that in 
the appropriate hardware environment 
write-update protocols can be imple- 

mented efficiently. For example, Plus is 
a hardware implementation of DSM that 
uses a write-update protocol. Figure 4 
traces the Plus write-update protocol. 
which begins all updates with the block’s 
master node. then proceeds down the 
copy-list chain. The write operation is 
completed when the last node in the 
chain sends an acknowledgment mes- 
sage to the originator of the write re- 
quest. 

Munin“ uses t!pe-speci,fic m e m o r y  
coherence. coherence protocols tailored 
for different types of data. For example. 
Munin uses a write-update protocol to 
keep coherent data that is read much 
more frequently than it is written (read- 
mostly data). Because an invalidation 
message is about the same size as an 
update message. an update costs no more 
than an invalidate. However. the over- 
head of making multiple read-only 
copies of the data item after each inval- 
idate is avoided. An eager paging strat- 
egy supports the Munin producer- 
consumer memory type. Data. once 
written by the producer process. is trans- 
ferred to the consumer proct where 
it remains available until the consumer 
process is ready to use it. This reduces 
overhead. since the consumer does not 
request data already available in the 
buffer. 

Replacement strategy. In  systems that 
allow data to migrate around the sys- 
tem. two problems arise when the avail- 
able space for “caching” shared data 
fills up: Which data should be replaced 
to free space and where should it go? I n  
choosing the data item to be replaced, a 
DSM system works almost like the cach- 
ing system of a shared-memory multi- 
processor. However, unlike most cach- 
ing systems, which use a simple least 
recently used or random replacement 
strategy, most DSM systems differenti- 
ate the status of data items and priori- 
tize them. For example, priority is given 
to  shared items over exclusively owned 
items because the latter have to be trans- 
ferred over the network. Simply delet- 
ing a read-only shared copy of a data 
item is possible because no data is lost. 
Shiva prioritizes pages on the basis of a 
linear combination of type (read-only, 
owned read-only. and writable) and least 
recently used statistics. 

Once a piece of data is to be replaced. 
the system must make sure it is not lost. 
In  the caching system of a multiproces- 
sor. the item would simply be placed in 
main memory. Some DSM systems. such 
as Memnet, use an equivalent scheme. 
The system transfers the data item to a 
“home node” that has a statically allo- 
cated space (perhaps on disk) to store a 
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copy of an item when it is not needed 
elsewhere in the system. This method is 
simple to implement, but it wastes a lot 
of memory. An improvement is to have 
the node that wants to delete the item 
simply page it out onto disk. Although 
this does not waste any memory space, 
it is time consuming. Because it may be 
faster to transfer something over the 
network than to transfer it to  disk, a 
better solution (used in Shiva) is to  keep 
track of free memory in the system and 
to simply page the item out to a node 
with space available to  it. 

Thrashing. DSM systems are par- 
ticularly prone to  thrashing. For exam- 
ple, if two nodes compete for write 
access to  a single data item, it may be 
transferred back and forth at such a 
high rate that no real work can get done 
(a  Ping-Pong effect). Two systems, 
Munin and Mirage, attack this problem 
directly. 

Munin allows programmers to associ- 
ate types with shared data: write-once, 
write-many, producer-consumer, pri- 
vate, migratory, result, read-mostly, syn- 
chronization, and general read/write. 
Shared data of different types get dif- 
ferent coherence protocols. To  avoid 
thrashing with two competing writers, a 
programmer could specify the type as 
write-many and the system would use a 
delayed write policy. (Munin does not 
guarantee strict consistency of memory 
in this case.) 

Tailoring the coherence algorithm to 
the shared-data usage patterns can 
greatly reduce thrashing. However, 
Munin requires programmers to specify 
the type of shared data. Programmers 
are notoriously bad at predicting the 
behavior of their programs, so this 
method may not be any better than 
choosing a particular protocol. In addi- 
tion, because the type remains static 
once specified, Munin cannot dynami- 
cally adjust to  an application’s changing 
behavior. 

Mirage3 uses another method to  re- 
duce thrashing. It specifically examines 
the case when many nodes compete for 
access to  the same page. To  stop the 
Ping-Pong effect, Mirage adds a dynam- 
ically tunable parameter to  the coher- 
ence protocol. This parameter deter- 
mines the minimum amount of time (A) 
a page will be available at a node. For 
example, if a node performed a write to 
a shared page, the page would be writ- 
able on that node for A time. This solves 

the problem of having a page stolen 
away after only a single request on a 
node can be satisfied. Because A is tuned 
dynamically on the basis of access pat- 
terns, a process can complete a write 
run (or read run) before losing access to  
the page. Thus, A is akin to  a time slice 
in a multitasking operating system, ex- 
cept in Mirage it is dynamically ad- 
justed to meet an application’s specific 
needs. 

Related algorithms. To support a DSM 
system, synchronization operations and 
memory management must be specially 
tuned. Semaphores, for example, are 
typically implemented on shared-  
memory systems by using spin locks. In 
a DSM system, a spin lock can easily 
cause thrashing, because multiple nodes 
may heavily access shared data. For 
better performance, some systems pro- 
vide specialized synchronization primi- 
tives along with DSM. Clouds provides 
semaphore operations by grouping 
semaphores into centrally managed seg- 
ments. Munin supports the synchroni- 
zation memory type with distributed 
locks. Plus supplies a variety of syn- 
chronization instructions, and supports 
delayed execution, in which the syn- 
chronization can be initiated, then later 
tested for successful completion. Dubois, 
Scheurich, and Briggs12 discuss the rela- 
tionship between coherence and syn- 
chronization. 

Memory management can be restruc- 
tured for DSM. A typical memory- 
allocation scheme (as in the C library 
malloc()) allocates memory out of a 
common pool, which is searched each 
time a request is made. A linear search 
of all shared memory can be expensive. 
A better approach is to partition avail- 
able memory into private buffers on 
each node and allocate memory from 
the global buffer space only when the 
private buffer is empty. 

esearch has shown distributed 
shared memory systems to be 
viable. The systems described 

in this article demonstrate that DSM 
can be implemented in a variety of hard- 
ware and software environments: com- 
mercial workstations with native oper- 
ating systems software,  innovative 
customized hardware, and even hetero- 
geneous systems. Many of the design 
choices and algorithms needed to im- 
plement DSM are well understood and 

integrated with related areas of com- 
puter science. 

The performance of DSM is greatly 
affected by memory-access patterns and 
replication of shared data. Hardware 
implementations have yieldedenormous 
reductions in communication latency and 
the advantages of a smaller unit of shar- 
ing. However, the performance results 
to  date are preliminary. Most systems 
are experimental or prototypes consist- 
ing of only a few nodes. In addition, 
because of the dearth of test programs, 
most studies are based on a small group 
of applications or a synthetic workload. 
Nevertheless, research has proved that 
DSM effectively supports parallel pro- 
cessing, and it promises to  be a fruitful 
and exciting area of research for the 
coming decade. W 
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