
Memorv: A Survev
of Issues and Algorithms

Bill Nitzberg and Virginia Lo, University of Oregon

A s we slowly approach the physical limits of processor and memory speed,
it is becoming more attractive to use multiprocessors to increase comput-
ing power. Two kinds of parallel processors have become popular: tightly

coupled shared-memory multiprocessors and distributed-memory multiproces-
sors. A tightly coupled multiprocessor system - consisting of multiple CPUs and
a single global physical memory - is more straightforward to program because it
is a natural extension of a single-CPU system. However, this type of multiprocessor
has a serious bottleneck: Main memory is accessed via a common bus - a
serialization point - that limits system size to tens of processors.

Distributed-memory multiprocessors, however, do not suffer from this draw-
back. These systems consist o fa collection of independent computers connected by
a high-speed interconnection network. If designers choose the network topology
carefully, the system can contain many orders of magnitude more processors than
a tightly coupled system. Because all communication between concurrently exe-
cuting processes must be performed over the network in such a system, until
recently the programming model was limited to a message-passing paradigm.
However, recent systems have implemented a shared-memory abstraction on top
of message-passing distributed-memory systems. The shared-memory abstraction
gives these systems the illusion of physically shared memory and allows program-
mers to use the shared-memory paradigm.

As Figure 1 shows, distributed shared memory provides a virtual address space
shared among processes on loosely coupled processors. The advantages offered by
DSM include ease of programming and portability achieved through the shared-
memory programming paradigm, the low cost of distributed-memory machines,
and scalability resulting from the absence of hardware bottlenecks.

DSM has been an active area of research since the early 1980s, although its
foundations in cache coherence and memory management have been extensively
studied for many years. DSM research goals and issues are similar to those of
research in multiprocessor caches or networked file systems, memories for nonuni-
form memory access multiprocessors, and management systems for distributed or
replicated databases.' Because of this similarity, many algorithms and lessons
learned in these domains can be transferred to DSM systems and vice versa.

Distributed shared-
memory systems

implement the shared-
memory abstraction On

multicomputer
architectures,
combining the

scalability of network-
based architectures

with the convenience Of

shared-memory
programming.

52 00 18-9 I6219 1/0800-0052$01 00 @ I99 I IEEE COMPUTER

However, each of the above systems has
unique features (such as communica-
tion latency), so each must be consid-
ered separately.

The advantages of DSM can be real-
ized with reasonably low runtime over-
head. DSM systems have been imple-
mented using three approaches (some
systems use more than one approach):

(1) hardware implementations that
extend traditional caching tech-
niques to scalable architectures.

(2) operat ing system and library
implementations that achieve
sharing and coherence through
virtual memory-management
mechanisms, and

(3) compiler implementations where
shared accesses are automatically
converted into synchronization
and coherence primitives.

These systems have been designed on
common networks of workstations or
minicomputers, special-purpose mes-
sage-passing machines (such as the
Intel iPSCI2), custom hardware, and
even heterogeneous systems.

This article gives an integrated over-
view of important DSM issues: memory
coherence, design choices, and imple-
mentation methods. In our presenta-
tion, we use examples from the DSM
systems listed and briefly described in
the sidebar on page 55. Table 1 com-
pares how design issues are handled in a
selected subset of the systems.

Design choices

A DSM system designer must make
choices regarding structure, granulari-
ty, access, coherence semantics, scal-
ability, and heterogeneity. Examination
of how designers handled these issues in
several real implementations of DSM
shows the intricacies of such a system.

Structure and granularity. The struc-
ture and granularity of a DSM system
are closely related. Structure refers to
the layout of the shared data in mem-
ory. Most DSM systems d o not struc-
ture memory (it is a linear array of
words), but some structure the data as
objects, language types, or even an as-
sociative memory. Granularity refers to
the size of the unit of sharing: byte,
word, page, or complex data structure.

Ivy,’one of the first transparent DSM

August 1991

/ I /

/ Y / Node 0

I Node 1

Node n

Figure 1. Distributed shared memory.

systems, implemented shared memory
as virtual memory. This memory was
unstructured and was shared in 1-Kbyte
pages. In systems implemented using
the virtual memory hardware of the
underlying architecture, it is convenient
to choose a multiple of the hardware
page size as the unit of sharing. Mirage’
extended Ivy’s single shared-memory
space to support a paged segmentation
scheme. Users share arbitrary-size re-
gions of memory (segments) while the
system maintains the shared space in
pages.

Hardware implementations of DSM
typically support smaller grain sizes. For
example, Dash4 and Memneti also sup-
port unstructured sharing, but the unit
of sharing is 16 and 32 bytes respec-
tively -typical cache line sizes. Plush is
somewhat of a hybrid: The unit of rep-
lication is a page, while the unit of co-
herence is a 32-bit word.

Because shared-memory programs
provide locality of reference, a process
is likely to access a large region of its
shared address space in a small amount
of time. Therefore. larger “page” sizes
reduce paging overhead. However, shar-
ing may also cause contention, and the
larger the page size, the greater the
likelihood that more than one process
will require access to a page. A smaller
page reduces the possibility offalseshar-
ing, which occurs when two unrelated
variables (each used by different pro-
cesses) are placed in the same page. The
page appears shared, even though the

original variables were not. Another
factor affecting the choice of page size is
the need to keep directory information
about the pages in the system: the small-
er the page size. the larger the directory.

A method of structuring the shared
memory is by data type. With this
method. shared memory is structured
a s objects in dis t r ibuted object-
oriented systems, as in the Emerald,
Choices, and Clouds’ systems; or it is
structured as variables in the source
language. as in the Shared Data-Object
Model and Munin systems. Because with
these systems the sizes of objects and
data types vary greatly, the grain size
varies to match the application. How-
ever, these systems can still suffer from
false sharing when different parts of an
object (for example, the top and bottom
halves of an array) are accessed by dis-
tinct processes.

Another method is t o structure the
shared memory like a database. Linda,8
a system that has such a model, orders
its shared memory as an associative
memory called a tuplespace. This struc-
ture allows the location of data to be
separated from its value, but it also re-
quires programmers to use special ac-
cess functions to interact with the shared-
memory space. In most other systems,
access to shared data is transparent.

Coherence semantics. For program-
mers to write correct programs on a
shared-memory machine, they must
understand how parallel memory up-
dates are propagated throughout the

53

Table 1. DSM design issues.

System Current Structure Coherence Coherence Sources of Support Hetero-
Name Implementation and Semantics Protocol Improved for Synchro- geneous

Granularity Performance nization Support

Dash Hardware, 16 bytes
modified Silicon
Graphics Iris
4D/340 worksta-
tions, mesh

Ivy Software, Apollo 1-Kbyte
workstations, pages
Apollo ring,
modified Aegis

Linda Software, Tuples
variety of
environments

token ring
Memnet Hardware, 32 bytes

Mermaid Software, Sun 8 Kbytes
workstations (Sun),
DEC Firefly 1 Kbyte
multiprocessors, (Firefly)
Mermaidhative
operating system

Mirage Software, VAX 512-byte
11/750, Ether- pages
net, Locus dis-
tributed operat-
ing system, Unix
System V interface

Munin Software, Sun Objects
workstations,
Ethernet, Unix
System V kernel
and Presto paral-
lel programming
environment

Plus Hardware and Page for
software, sharing,
Motorola 88000, word for
Caltech mesh, coherence
Plus kernel

Intel iPSC/2, pages
hypercube,
Shivafnative
operating system

Shiva Software, 4-Kbyte

Release

Strict

No
mutable
data
Strict

Strict

Strict

Weak

Processor

Strict

Write-
invalidate

Write-
invalidate

Varied

Write-
invalidate

Write-
invalidate

Write-
invalidate

Type-specific

Relaxed Queued locks, No
coherence. atomic incre-
prefetching mentation and

decrementation

Pointer chain Synchronized No
collapse, selec- pages, sema-
tive broadcast phores, event

counts
Hashing

Vectored in-
terrupt support
of control flow

Messages fa
semaphores
and signal/
wait

Kernel-level
implementa-
tion, time
window
coherence
protocol
Delayed

(delayed write update
update for queue
read-mostly
protocol)

Nondemand Delayed
write-update operations

?

No

Yes

Unix System V No
semaphores

Synchronized No
objects

C o m p 1 ex
synchronization
instructions

No

Write- Data structure Messages for No
invalidate compaction, semaphores

memory as and signal/
backing store wait

system. The most intuitive semantics
for memory coherence is strict consis-
tency. (Although “Coherence” and “con-
sistency” are used somewhat inter-
changeably in the literature, we use
coherence as the general term for the

semantics of memory operations, and
consistency to refer to a specific kind of
memory coherence.) In a system with
strict consistency, a read operation re-
turns the most recently written value.
However, “most recently” is an ambig-

uous concept in a distributed system.
For this reason, and to improve perfor-
mance, some DSMsystems provide only
a reduced form of memory coherence.
For example, Plus provides processor
consistency, and Dash provides only

54 COMPUTER

release consistency. In accordance with
the RISC philosophy, both of these sys-
tems have mechanisms for forcing co-
herence, but their use must be explicitly
specified by higher level software (a
compiler) or perhaps even the program-
mer.

Relaxed coherence semantics allows
more efficient shared access because it
requires less synchronization and less
datamovement. However, programs that
depend on a stronger form of coherence
may not perform correctly if executed
in a system that supports only a weaker
form. Figure 2 gives brief definitions of
strict, sequential, processor, weak, and
release consistency, and illustrates the
hierarchical relationship among these
types of coherence. Table 1 indicates
the coherence semantics supported by
some current DSM systems.

Figure 2. Intuitive definitions of mem-
ory coherence. The arrows point from
stricter to weaker consistencies.

DSM systems

A read returns the most recently written value

The result of any execution appears as some
interleaving of the operations of the individual
nodes when executed on a multithreaded
sequential machine.

Processor consistency
Writes issued by each individual
node are never seen out of order,
but the order of writes from two
different nodes can be observed
differently.

I I
\

.
Weak consistency

The programmer enforces con-
sistency using synchronization
operators guaranteed to be
sequentially consistenf.

J
Release consistency

Weak consistency with two types of synchron-
ization operators: acquire and release. Each
type of operator is guaranteed to be processor
consistent.

This partial listing gives the name of the DSM system, the princi-
pal developers of the system, the site and duration of their research,
and a brief description of the system. Table 1 gives more informa-
tion about the systems followed with an asterisk.

1987-): A heterogeneous DSM system that allows data structures
to be shared across machines. Agora was the first system to sup-
port weakconsistency.

Amber (Chase, Feeley, and Levy, University of Washington,
1988-): An object-based DSM system in which sharing is performed
by migrating processes to data as well as data to processes.

Capnet (Tam and Farber, University of Delaware, 1990-): An ex-
tension of DSM to a wide area network.

Choices (Johnston and Campbell, University of Illinois,
1988-): DSM incorporated into a hierarchical object-oriented distrib-
uted operating system.

Clouds (Ramachandran and Khalidi, Georgia Institute of Tech-
nology, 1987-): An object-oriented distributed operating system
where objectscan migrate.

Dash' (Lenoski, Laudon, Gharachorloo, Gupta, and Hennessy,
Stanford University, 1988-): A hardware implementation of DSM
with a directory-based coherence protocol. Dash provides release
consistency.

Emerald (Jul, Levy, Hutchinson, and Black, University of Wash-
ington, 1986-1 988): An object-oriented language and system that
indirectly supports DSM through object mobility.

Ivy' (Li, Yale University, 1984-1986): An early page-oriented
DSM ona networkof Apolloworkstations.

Agora (Bisiani and Forin, Carnegie Mellon University,

Linda* (Carrier0 and Gelernter, Yale University, 1982-): A
shared associative object memory with access functions. Linda can
be implemented for many languages and machines.

Memnet' (Delp and Farber, University of Delaware, 1986-1 988):
A hardware implementation of DSM implemented on a 200-Mbps
token ring used to broadcast invalidates and read requests.

and Princeton University, 1988-1 991): A heterogeneous DSM sys-
tem where the compiler forcesshared pages to contain a single
data type. Type conversion is performed on reference.

Bowie, Md., 1990-): A transparent DSM built on SunOS 4.0.
Mether allows applications to access an inconsistent state for
efficiency.

Mirage' (Fleisch and Popek, University of California at Los
Angeles, 1987-1989): A kernel-level implementation of DSM.
Mirage reduces thrashing by prohibiting a page from being sto-
len before a minimum amount of time (A) has elapsed.

Munin' (Bennett, Carter, and Zwaenepoel, Rice University,
1989-): An object-based DSM system that investigates type-
specific coherence protocols.

Plus* (Bisiani and Ravishankar, Carnegie Mellon University,
1988-): A hardware implementation of DSM. Plus uses a write-
update coherence protocol and performs replication only by pro-
gram request.

Shared Data-Object Model (Bal, Kaashoek, and Tannen-
baum, Vrije University, Amsterdam, The Netherlands, 1988-): A
DSM implementation on top of the Amoeba distributed operat-
ing system.

Shiva' (Li and Schaefer, Princeton University, 1988-): An
Ivy-like DSM system for the Intel iPSCl2 hypercube.

Mermaid* (Stumm, Zhou, Li, and Wortman, University of Toronto

Mether (Minnich and Farber, Supercomputing Research Center,

August 1991 55

Scalability. A theoretical benefit of
DSM systems is that they scale better
than tightly coupled shared-memory
multiprocessors. The limits of scal-
ability are greatly reduced by two fac-
tors: central bottlenecks (such as the
bus of a tightly coupled shared-
memory multiprocessor), and global
common knowledge operations and
storage (such as broadcast messages or
full directories, whose sizes are pro-
portional to the number of nodes).

Li and Hudak2 went through several
iterations to refine a coherence proto-
col for Ivy before arriving at their dy-
namic distributed-manager algorithm,
which avoids centralized bottlenecks.
However, Ivy and most other DSM
systems are currently implemented on
top of Ethernet (itself a centralized
bottleneck), which can support only
about 100 nodes at a time. This limita-
tion is most likely a result of these
systems being research tools rather than
an indication of any real design flaw.
ShivaY is an implementation of DSM
on an Intel iPSCR hypercube, and it
should scale nicely. Nodes in the Dash
system are connected on two meshes.
This implies that the machine should
be expandable, but the Dash proto-
type is currently limited by its use of a
full bit vector (one bit per node) to
keep track of page replication.

Heterogeneity. At first glance, shar-
ing memory between two machines with
different architectures seems almost
impossible. The machinesmay not even
use the same representation for basic
data types (integers, floating-point
numbers, and so on). It is a bit easier if
the DSM system is structured as vari-
ables or objects in the source language.
Then a DSM compiler can add conver-
sion routines to all accesses to shared
memory. In Agora, memory is struc-
tured as objects shared among hetero-
geneous machines.

Mermaidlo explores another novel
approach: Memory is shared in pages,
and a page can contain only one type of
data. Whenever a page is moved be-
tween two architecturally different sys-
tems, a conversion routine converts
the data in the page to the appropriate
format.

Although heterogeneous DSM might
allow more machines to participate in
a computation, the overhead of con-
version seems to outweigh the bene-
fits.

56

Implementation

A DSM system must automatically
transform shared-memory access into
interprocess communication. This re-
quires algorithms to locate and access
shared data, maintain coherence, and
replace data. A DSM system may also
have additional schemes to improve per-
formance. Such algorithms directly sup-
port DSM. In addition,DSM implement-
ers must tailor operat ing system
algorithms to support process synchro-
nization and memory management. We
focus on the algorithms used in Ivy, Dash,
Munin, Plus, Mirage, and Memnet be-
cause these systems illustrate most of
the important implementation issues.
Stumm and Zhou’ give a good evolu-
tionary overview of algorithms that sup-
port static, migratory, and replicated
data.

Data location and access. To share
data in a DSM system, a program must
be able to find and retrieve the data it
needs. If data does not move around in
the system - it resides only in a single
static location - then locating it is easy.
All processes simply “know” where to
obtain any piece of data. Some Linda
implementations use hashing on the tu-
ples to distribute data statically. This
has the advantages of being simple and
fast, but may cause a bottleneck if data is
not distributed properly (for example,
all shared data ends up on a single node).

An alternative is to allow data to mi-
grate freely throughout the system. This
allows data to be redistributed dynami-
cally to where it is being used. However,
locating data then becomes more diffi-
cult. In this case, the simplest way to
locate data is to have a centralized
server that keeps track of all shared
data. The centralized method suffers
from two drawbacks: The server serial-
izes location queries, reducing parallel-
ism, and the server may become heavily
loaded and slow the entire system.

Instead of using a centralized server, a
system can broadcast requests for data.
Unfortunately, broadcasting does not
scale well. All nodes - not just the
nodes containing the data - must pro-
cess a broadcast request. The network
latency of a broadcast may also require
accesses to take a long time to complete.

To avoid broadcasts and distribute
the load more evenly, several systems
use an owner-based distributed scheme.

_ -

This scheme is independent of data rep-
lication, but is seen mostly in systems
that support both data migration and
replication. Each piece of data has an
associated owner - a node with the
primary copy of the data. The owners
change as the data migrates through the
system. When another node needs a copy
of the data, it sends a request to the
owner. If the owner still has the data, it
returns the data. If the owner has given
the data to some other node, it forwards
the request to the new owner.

The drawback with this scheme is that
a request may be forwarded many times
before reaching the current owner. In
some cases, this is more wasteful than
broadcasting. In Ivy, all nodes involved
in forwarding a request (including the
requester) are given the identity of the
current owner. This collapsing of
pointer chains helps reduce the forward-
ing overhead and delay.

When it replicates data, a DSM sys-
tem must keep track of the replicated
copies. Dash uses a distributed directo-
ry-based scheme, implemented in hard-
ware. The Dash directory for a given
cluster (node) keeps track of the physi-
cal blocks in that cluster. Each block is
represented by a directory entry that
specifies whether the block is unshared
remote (local copy only), shared remote,
or shared dirty. If the block is shared
remote, the directory entry also indi-
cates the location of replicated copies of
the block. If the block is shared dirty, the
directory entry indicates the location of
the single dirty copy. Only the special
node known as the h o m e cluster posses-
ses the directory block entry. A node
accesses nonlocal data for reading by
sending a message to the home cluster.

Ivy’s dynamic distributed scheme also
supports replicated data. A ptable on
each node contains for each page an
entry that indicates the probable loca-
tion for the referenced page. As de-
scribed above, a node locates data by
following the chain of probable owners.
The copy-list scheme implemented by
Plus uses a distributed linked list to keep
track of replicated data. Memory refer-
ences are mapped to the physically clos-
est copy by the page map table.

Coherence protocol. All DSM systems
provide some form of memory coher-
ence. If the shared data is not replicated,
then enforcing memory coherence is triv-
ial. The underlying network automati-
cally serializes requests in the order they

COMPUTER

Charles F. Goldfarb, IBM Almaden Resecirch Center

HvTime is being develoDed as an ment. DIUS the large caDital and orga- and SPDL. Some industrv standards

cwrite request (read-exclusive)>

I I I

I 1 <invalidate request> I 1 pq-=j--I I
remote

Cluster A
(home cluster)

(a)

cwrite request (read-exclusive)>

J

DC sends ack- 0 nowledgment
to new owner.

------l
<invalidate

ackno wledgmenb

0 DC forwards /
request to

owner cluster.

New directory @ block entry:

Cluster A
(home cluster)

Cluster B Cluster C
(requesting cluster)

cackz

CPU issues 0 write (read-
exclusive to home
cluster.

@Write completes

-z

Cluster B
(requesting cluster)

<ownership
update>

I

DC sends data - @to and ownership requester up

date message to
home node.

Cluster C
(owner cluster)

Figure 3. Simplified Dash write-invalidate protocol: (a) Data is shared remote; (b) data is dirty remote (after events de-
picted in Figure 3a). (DC stands for directory controller.)

occur. A node handling shared data can
merely perform each request as it is
received. This method will ensure strict
memory consistency - the strongest
form of coherence. Unfortunately, seri-
alizing data access creates a bottleneck
and makes impossible a major advan-
tage of DSM: parallelism.

To increase parallelism, virtually all
DSM systems replicate data. Thus, for
example, multiple reads can be per-
formed in parallel. However, replica-
tion complicates the coherence proto-
col. Two types of protocols -
write-invalidate and write-update pro-
tocols - handle replication. In a write-
invalidate protocol, there can be many

copies of a read-only piece of data, but
only one copy of a writable piece of
data. The protocol is called write-
invalidate because it invalidates all cop-
ies of a piece of data except one before
a write can proceed. In a write-update
scheme, however, a write updates all
copies of a piece of data.

Most DSM systems have write-
invalidate coherence protocols. All the
protocols for these systems are similar.
Each piece of data has a status tag that
indicates whether the data is valid,
whether it is shared, and whether it is
read-only or writable. For a read, if the
data is valid, it is returned immediately.
If the data is not valid, a read request is

sent to the location of a valid copy, and
a copy of the data is returned. If the data
was writable on another node, this read
request will cause it to become read-
only. The copy remains valid until an
invalidate request is received.

For a write, if the data is valid and
writable, the request is satisfied imme-
diately. If the data is not writable, the
directory controller sends out an invali-
date request, along with a request for a
copy of the data if the local copy is not
valid. When the invalidate completes,
the data is valid locally and writable,
and the original write request may com-
plete.

Figure 3 illustrates the Dash directory-

August 1991 57

<update>

7

<update> i::
to master no&.

update message io
next copy.

Node B \ Node A
cwrite request>

/
w l 6 MCM updates x.

/

Figure 4. The Plus write-update
protocol. (MCM stands for

Page map table

write request to
remote node 6.

memory coherence manager.) Node D

based coherence protocol. The sequence
of events and messages shown in Figure
3a occurs when the block to be written
is in shared-remote state (multiple read-
only copies on nodes A and B) just
before the write. Figure 3b shows the
events and messages that occur when
the block to be written is in shared-dirty
state (single dirty copy on node C) just
before the write. In both cases. the ini-
tiator of the write sends a request to the
home cluster. which uses the informa-
tion in the directory to locate and trans-
fer the data and to invalidate copies.
Lenoski et a1.l give further details about
the Dash coherence protocol and the
methods they used to fine-tune the pro-
tocol for high performance.

Li and Hudak’ show that the write-
invalidate protocol performs well for a
variety of applications. In fact. they show
superlinear speedups for a linear equa-
tion solver and a three-dimensional par-
tial differential equation solver, result-
ing from the increased overall physical
memory and cache sizes. Li and Hudak
rejected use of a write-update protocol
at the onset with the reasoning that
network latency would make it ineffi-
cient.

Subsequent research indicates that in
the appropriate hardware environment
write-update protocols can be imple-

mented efficiently. For example, Plus is
a hardware implementation of DSM that
uses a write-update protocol. Figure 4
traces the Plus write-update protocol.
which begins all updates with the block’s
master node. then proceeds down the
copy-list chain. The write operation is
completed when the last node in the
chain sends an acknowledgment mes-
sage to the originator of the write re-
quest.

Munin“ uses t!pe-speci,fic m e m o r y
coherence. coherence protocols tailored
for different types of data. For example.
Munin uses a write-update protocol to
keep coherent data that is read much
more frequently than it is written (read-
mostly data). Because an invalidation
message is about the same size as an
update message. an update costs no more
than an invalidate. However. the over-
head of making multiple read-only
copies of the data item after each inval-
idate is avoided. An eager paging strat-
egy supports the Munin producer-
consumer memory type. Data. once
written by the producer process. is trans-
ferred to the consumer proct where
it remains available until the consumer
process is ready to use it. This reduces
overhead. since the consumer does not
request data already available in the
buffer.

Replacement strategy. In systems that
allow data to migrate around the sys-
tem. two problems arise when the avail-
able space for “caching” shared data
fills up: Which data should be replaced
to free space and where should it go? I n
choosing the data item to be replaced, a
DSM system works almost like the cach-
ing system of a shared-memory multi-
processor. However, unlike most cach-
ing systems, which use a simple least
recently used or random replacement
strategy, most DSM systems differenti-
ate the status of data items and priori-
tize them. For example, priority is given
to shared items over exclusively owned
items because the latter have to be trans-
ferred over the network. Simply delet-
ing a read-only shared copy of a data
item is possible because no data is lost.
Shiva prioritizes pages on the basis of a
linear combination of type (read-only,
owned read-only. and writable) and least
recently used statistics.

Once a piece of data is to be replaced.
the system must make sure it is not lost.
In the caching system of a multiproces-
sor. the item would simply be placed in
main memory. Some DSM systems. such
as Memnet, use an equivalent scheme.
The system transfers the data item to a
“home node” that has a statically allo-
cated space (perhaps on disk) to store a

COMPUTER 58

copy of an item when it is not needed
elsewhere in the system. This method is
simple to implement, but it wastes a lot
of memory. An improvement is to have
the node that wants to delete the item
simply page it out onto disk. Although
this does not waste any memory space,
it is time consuming. Because it may be
faster to transfer something over the
network than to transfer it to disk, a
better solution (used in Shiva) is to keep
track of free memory in the system and
to simply page the item out to a node
with space available to it.

Thrashing. DSM systems are par-
ticularly prone to thrashing. For exam-
ple, if two nodes compete for write
access to a single data item, it may be
transferred back and forth at such a
high rate that no real work can get done
(a Ping-Pong effect). Two systems,
Munin and Mirage, attack this problem
directly.

Munin allows programmers to associ-
ate types with shared data: write-once,
write-many, producer-consumer, pri-
vate, migratory, result, read-mostly, syn-
chronization, and general read/write.
Shared data of different types get dif-
ferent coherence protocols. To avoid
thrashing with two competing writers, a
programmer could specify the type as
write-many and the system would use a
delayed write policy. (Munin does not
guarantee strict consistency of memory
in this case.)

Tailoring the coherence algorithm to
the shared-data usage patterns can
greatly reduce thrashing. However,
Munin requires programmers to specify
the type of shared data. Programmers
are notoriously bad at predicting the
behavior of their programs, so this
method may not be any better than
choosing a particular protocol. In addi-
tion, because the type remains static
once specified, Munin cannot dynami-
cally adjust to an application’s changing
behavior.

Mirage3 uses another method to re-
duce thrashing. It specifically examines
the case when many nodes compete for
access to the same page. To stop the
Ping-Pong effect, Mirage adds a dynam-
ically tunable parameter to the coher-
ence protocol. This parameter deter-
mines the minimum amount of time (A)
a page will be available at a node. For
example, if a node performed a write to
a shared page, the page would be writ-
able on that node for A time. This solves

the problem of having a page stolen
away after only a single request on a
node can be satisfied. Because A is tuned
dynamically on the basis of access pat-
terns, a process can complete a write
run (or read run) before losing access to
the page. Thus, A is akin to a time slice
in a multitasking operating system, ex-
cept in Mirage it is dynamically ad-
justed to meet an application’s specific
needs.

Related algorithms. To support a DSM
system, synchronization operations and
memory management must be specially
tuned. Semaphores, for example, are
typically implemented on shared-
memory systems by using spin locks. In
a DSM system, a spin lock can easily
cause thrashing, because multiple nodes
may heavily access shared data. For
better performance, some systems pro-
vide specialized synchronization primi-
tives along with DSM. Clouds provides
semaphore operations by grouping
semaphores into centrally managed seg-
ments. Munin supports the synchroni-
zation memory type with distributed
locks. Plus supplies a variety of syn-
chronization instructions, and supports
delayed execution, in which the syn-
chronization can be initiated, then later
tested for successful completion. Dubois,
Scheurich, and Briggs12 discuss the rela-
tionship between coherence and syn-
chronization.

Memory management can be restruc-
tured for DSM. A typical memory-
allocation scheme (as in the C library
malloc()) allocates memory out of a
common pool, which is searched each
time a request is made. A linear search
of all shared memory can be expensive.
A better approach is to partition avail-
able memory into private buffers on
each node and allocate memory from
the global buffer space only when the
private buffer is empty.

esearch has shown distributed
shared memory systems to be
viable. The systems described

in this article demonstrate that DSM
can be implemented in a variety of hard-
ware and software environments: com-
mercial workstations with native oper-
ating systems software, innovative
customized hardware, and even hetero-
geneous systems. Many of the design
choices and algorithms needed to im-
plement DSM are well understood and

integrated with related areas of com-
puter science.

The performance of DSM is greatly
affected by memory-access patterns and
replication of shared data. Hardware
implementations have yieldedenormous
reductions in communication latency and
the advantages of a smaller unit of shar-
ing. However, the performance results
to date are preliminary. Most systems
are experimental or prototypes consist-
ing of only a few nodes. In addition,
because of the dearth of test programs,
most studies are based on a small group
of applications or a synthetic workload.
Nevertheless, research has proved that
DSM effectively supports parallel pro-
cessing, and it promises to be a fruitful
and exciting area of research for the
coming decade. W

Acknowledgments
This work was supported in part by NSF

grant CCR-8808532, a Tektronix research
fellowship, and the NSF Research Experi-
ences for Undergraduates program. We ap-
preciate the comments from the anonymous
referees and thank the authors who verified
information about their systems. Thanks also
to Kurt Windisch for helping prepare this
manuscript.

References
1.

2.

3.

4.

5.

6.

M. Stumm and S. Zhou, “Algorithms
Implementing Distributed Shared Mem-
ory,” Computer, Vol. 23, No. 5, May 1990,
pp. 54-64.

K. Li and P. Hudak, “Memory Coher-
ence in Shared Virtual Memory Systems,”
ACM Trans. Computer Systems, Vol. 7,
NO. 4, NOV. 1989, pp. 321-359.

B. Fleisch and G. Popek, “Mirage: A
Coherent Distributed Shared Memory
Design,” Proc. I4thACM Symp. Operat-
ing System Principles, ACM, New York,
1989. pp. 211-223.

D. Lenoski et al., “The Directory-Based
Cache Coherence Protocol for the Dash
Multiprocessor,” Proc. 17th Int’l Symp.
Computer Architecture, IEEE CS Press,
Los Alamitos, Calif., Order No. 2047.
1990, pp. 148-159.

G. Delp, The Architecture and Imple-
mentation of Memnet: A High-speed
Shared Memory Computer Communica-
tion Network. doctoral dissertation, Univ.
of Delaware, Newark, Del., 1988.

R. Bisiani and M. Ravishankar, “Plus: A
Distributed Shared-Memory System,”
Proc. 17th Int’l Symp. Computer Archi-

August 1991 59

tecture, IEEE CS Press, Los Alamitos.
Calif., Order No. 2047, 1990, pp. 115-124.

7. U. Ramachandran and M.Y.A. Khalidi,
“An Implementation of Distributed
Shared Memory,” First Workshop Expe-
riences with Building Distributed and
Multiprocessor Systems, Usenix Assoc.,
Berkeley, Calif., 1989, pp. 21-38.

8. N. Carrier0 and D. Gelernter, How to
Write Parallel Programs: A First Course,
MIT Press, Cambridge, Mass., 1990.

9. K. Li and R. Schaefer. “A Hypercube
Shared Virtual Memory System,” Proc.
Int’l Conf. Parallel Processing, Pennsyl-
vania State Univ. Press, University Park,
Pa., and London. 1989, pp. 125-132.

10. S. Zhou et al., “A Heterogeneous Dis-
tributed Shared Memory,” to be published
in IEEE Trans. Parallel and Distributed
Systems.

11. J. Bennett. J. Carter, and W. Zwaene-
poel. ”Munin: Distributed Shared Mem-
ory Based on Type-Specific Memory Co-
herence,” Proc. I990 Con$ Principles and
Practice of Parallel Programming. ACM
Press, New York.N.Y., 1990,pp. 168-176.

12. M. Dub0is.C. Scheurich, andF.A. Briggs.
“Synchronization, Coherence, and Event
Ordering in Multiprocessors,” Com-
puter, Vol. 21. No. 2, Feb. 1988, pp. 9-21.

Bill Nitzberg is a PhD student in the Depart-
ment of Computer and Information Science
at the University of Oregon. In the AT&T-
sponsored ACM International Programming
Contest. Nitzberg was a member of the 1990
teamandcoached the 1991 team, which placed
eighth and sixth. respectively.

Nitzberg received a BS in mathematics
and an MS in computer science, both from
the University of Oregon. He is a member of
ACM.

Virginia Lo is an assistant professor in the
Department of Computer and Information
Science at the University of Oregon. Her
research interests include distributed oper-
ating systems and the mapping of parallel
algorithms to parallel architectures.

Lo received a BA from the University of
Michigan. an MS in computer science from
Pennsylvania State University, and a PhD in
computer science from the University of Illi-
nois at Urbana-Champaign. She is a member
of the IEEE, the IEEE Computer Society.
and the ACM.

Readers can reach the authors at the Department of Computer Science. University of
Oregon. Eugene. OR 97403: e-mail [last name]@cs.uoregon.edu.

A Symposium on High-Performance Chips

August 26-27, 1991

Stanford University, Palo Alto, Califomia

HIGH-PERFORMANCE PROCESSORS - Three Sessions
MIPS R4000, HP PA-RISC, Intel 80860XP, National Swordfish, INMOS H1,
Micron Floating Point RISC, and related topics.
HIGHLY PARALLEL CHIPS
Philips LIFE VLIWs, Intel & MIT message-driven processors, TRW CPUAX
LOW POWER & LOW COST CHIPS
Tera SPARC Chipset, LSI Logic SparKIT, Intel SMM “Virtual 386”
COMMUNICATIONS
Vitesse GaAs 64x64 Crosspoint, MIT RN1 Crossbar Router, Echelon
NEURON Family, Silicon Graphics Protocol Engine
CACHES & FLOATING POINT
MIPS R4000 Cache Design, TI Megacell Floating Point Family,
Intel i486 2nd Level Cache
SPECIAL PROCESSORS
C-Cube CL950 MPEG, DEC Smart Frame Buffer, lnova Neural Chip
PANEL SESSION
Five Instructions Per Clock: Truth or Consequences

General Chair
Martin Freeman, Philips Research
Program Co-chairs
Forest Baskett, Silicon Graphics
John Hennessy, Stanford University

IEEE/ Computer Society $240
or ACM Member
Non-Member $290
Full-Time Student $1 00

Mail check payable to HOT Chips
to: Dr. Robert G. Stewart

Stewart Research Enterprises
1658 Belvoir Drive
Los Altos, CA 94024

For further information call
Dr. Stewart at (41 5) 941 -6699.
Registration may be charged to
Mastercard or VISA and faxed to the
above number. Include: card number,
exact name on card, expiration date,
signature, and amount charged.

@ On-Site Registration
Space Permitting
Stanford University lEEE

Sunday, 5:OO p.m., Wine & Cheese
Reception, Rodin Gardens
Monday, 8:OO a.m., Dinkelspiel Aud.

COMPUTER 60

Charles F. Golrlfarb, IBM A l m a d e n Resiwrch Center

HvTime is being develoDed as an ment. DIUS the large caDital and orga- and SPDL. Some industrv standards

mailto:name]@cs.uoregon.edu

