
Parallel Computing

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu

http://www.mzahran.com

CSCI-UA.0480-003

Lecture 8: MPI - II

Many slides of this
lecture are adopted

and slightly modified from:
• Gerassimos Barlas
• Peter S. Pacheco

Dealing with I/O

Copyright © 2010, Elsevier Inc.
All rights Reserved

In all MPI implementations, all processes
in MPI_COMM_WORLD have access to

stdout and sterr.

BUT .. In most of them there is no scheduling
of access to output devices!

Running with 6 processes

Copyright © 2010, Elsevier Inc.
All rights Reserved

unpredictable output!!
• Processes are competing for stdout
• Result: nondeterminism!

How About Input?
• Most MPI implementations only allow

process 0 in MPI_COMM_WORLD to
access to stdin.

• If there is some input needed:
– Process 0 must read the data and send to

the other processes.

Function for reading user input

Copyright © 2010, Elsevier Inc.
All rights Reserved

Let’s apply what we’ve learned so
far, to solve an example more
sophisticated than printing

strings!

The Trapezoidal Rule

Copyright © 2010, Elsevier Inc.
All rights Reserved

To find this area
We approximate it with trapezoids.

One trapezoid

Copyright © 2010, Elsevier Inc.
All rights Reserved

The Trapezoidal Rule

Copyright © 2010, Elsevier Inc.
All rights Reserved

Pseudo-code for a serial program

Copyright © 2010, Elsevier Inc.
All rights Reserved

1

Parallelizing the Trapezoidal Rule

1. Partition problem solution into tasks …
As many tasks as possible.

2. Identify communication channels
between tasks.

3. Aggregate tasks into composite tasks.
4. Map composite tasks to cores.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Tasks and communications for
Trapezoidal Rule

Copyright © 2010, Elsevier Inc.
All rights Reserved

Parallel pseudo-code

Copyright © 2010, Elsevier Inc.
All rights Reserved

First version (1)

Copyright © 2010, Elsevier Inc.
All rights Reserved

First version (2)

Copyright © 2010, Elsevier Inc.
All rights Reserved

First version (3)

Copyright © 2010, Elsevier Inc.
All rights Reserved

The Final Sum … Tree again!

Copyright © 2010, Elsevier Inc.
All rights Reserved

An alternative tree-structured
global sum

Copyright © 2010, Elsevier Inc.
All rights Reserved

Is this better? or the previous one?
A: Depends on the underlying system!

Reduction

• Reducing a set of numbers into a smaller
set of numbers via a function
– Example: reducing the group [1, 2, 3, 4, 5]

with the sum function 15
• MPI provides a handy function that

handles almost all of the common
reductions that a programmer needs to
do in a parallel application

Every process has an element

Every process has an array of elements

MPI_Reduce

Copyright © 2010, Elsevier Inc.
All rights Reserved

only relevant
to dest_process

has size:
sizeof(datatype) * count

MPI_Reduce is called by all processes involved.
This is why it is called collective call.

Examples:

Predefined reduction operators in MPI

Copyright © 2010, Elsevier Inc.
All rights Reserved

Location = rank of the process that owns it

Collective vs. Point-to-Point
Communications

• All the processes in the communicator
must call the same collective function.
– For example, a program that attempts to

match a call to MPI_Reduce on one process
with a call to MPI_Recv on another process is
erroneous.

• The arguments passed by each process to
an MPI collective communication must be
“compatible.”
– For example, if one process passes in 0 as the

dest_process and another passes in 1, then the
outcome of a call to MPI_Reduce is erroneous.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Collective vs. Point-to-Point
Communications

• The output_data_p argument is only
used on dest_process.

• However, all of the processes still need
to pass in an actual argument
corresponding to output_data_p, even if
it’s just NULL.

• All collective communication calls are
blocking.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Collective vs. Point-to-Point
Communications

• Point-to-point communications are
matched on the basis of tags and
communicators.

• Collective communications don’t use
tags.

• They’re matched solely on the basis of
the communicator and the order in
which they’re called.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Example

Copyright © 2010, Elsevier Inc.
All rights Reserved

Assume:
• all processes use the operator MPI_SUM
• destination is process 0

What will be the final values of b and d??

Yet Another Example

MPI_Reduce(&x, &x, 1, MPI_DOUBLE, MPI_SUM, 0, comm);

This is illegal in MPI and the result is non-predictable!

MPI_Allreduce

• Useful in a situation in which all of the
processes need the result of a global
sum in order to complete some larger
computation.

Copyright © 2010, Elsevier Inc.
All rights Reserved

No destination argument!

Broadcast
• Data belonging to a single process is

sent to all of the processes in the
communicator.

Copyright © 2010, Elsevier Inc.
All rights Reserved

ALL processes in the communicator must call MPI_Bcast()

Copyright © 2010, Elsevier Inc.
All rights Reserved

A tree-structured broadcast.

A version of Get_input that uses
MPI_Bcast

Copyright © 2010, Elsevier Inc.
All rights Reserved

Conclusions

• A communicator is a collection of
processes that can send messages to
each other.

• Collective communications involve all the
processes in a communicator.

• When studying MPI be careful of the
caveats (i.e. usage that leads to crash,
nondeterministic behavior, …).

Copyright © 2010, Elsevier Inc.
All rights Reserved

