CSCI-UA.0480-003
Parallel Computing

Lecture 8: MPI - I

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com

Many slides of this
lecture are adopted
and slightly modified from:
* Gerassimos Barlas
* Peter S. Pacheco

Dealing with I/0

#include <stdio.h>
#include <mpi.h> In all MPT implementations, all processes
in MPT_COMM_WORLD have access to

int main(void) | stdout and sterr

int my_rank, comm_sz;

MPI Init (NULL, NULL);
MPI Comm size(MPI COMM WORLD, &comm sz);:
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank):

printf("Proc %d of %d > Does anyvone have a toothpick?\n",
my_rank., comm_sSzZ):

MPI Finalize(); . .
Fetuzi 0 BUT .. In most of them there is no scheduling

V' /% main «/ of access to output devices!

Copyright © 2010, Elsevier Inc.
All rights Reserved

Running with 6 processes

Proc 0 of 6 > Does anyone have a toothpick?
Proc | of 6 > Does anyone have a toothpick?
Proc 2 of 6 > Does anyone have a toothpick?
Proc 4 of 6 > Does anyone have a toothpick?
Proc 3 of 6 > Does anyone have a toothpick?
Proc 5 of 6 > Does anyone have a toothpick?

unpredictable output!
. Processes are competing for stdout
- Result: nondeterminism!

Copyright © 2010, Elsevier Inc.
All rights Reserved

How About Input?

* Most MPT implementations only allow
process O in MPT_COMM_WORLD to
access to stdin.

 If there is some input needed:

— Process O must read the data and send to
the other processes.

Function for reading user input

void Get_input (

int my_rank /= in %/,
int comm_Sz /% in #/,
double= =z _p /= out =/,
double+ b p /v out %/,
int« n_p /= out */) |

int dest:

if (my_rank == 0) {
printf("Enter a, b, and n\n");
gcanf("%1f %1f %¥4", a. p, b p, 1_p);
for (dest = 1; dest < comm_sz; dest++) {
MPI_Send(a_p. |, MPI DOUBLE, dest, 0, MPI_COMM WORLD);
MPI_Send(b_p, MPI DOUBLE, dest, 0O, MPI_COMM WORLD):

] I
MPI_ Send(n_p, 1, MPI_INT, dest, 0, MPI_ COMM WORLD);

J

} else { /% my_rank != 0 =*/
IPI_Recv(a_p, 1, MPI DOUBLE, 0, O, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
MPI_Recv(b_p, 1, MPI_DOUBLE, 0, O, MPI_COMM WORLD,
MPI_STATUS_IGNORE);
MPI Recv(n_p, 1, MPI_INT, 0O, O, MPI_COMM WORLD,
MPI_STATUS_IGNORE);

1
} /% Get_input «/

Copyright © 2010, Elsevier Inc.
All rights Reserved

Let's apply what we've learned so
far, to solve an example more
sophisticated than printing
strings!

The Trapezoidal Rule

YA\ YA

N7\

>
Q7
N

x V

(a) (b)

To find this area
i | We approximate it with trapezoids.

Copyright © 2010, Elsevier Inc.
All rights Reserved

One trapezoid
YA

=f
f(x)+ - - - 7%)’ (x)
f(Xpp1) ---—-F-—---

\

>
X Xipp X
N y

Area of one trapezoid =
Copyright © 2010, Elsevier Inc.
All rights Reserved

The Trapezoidal Rule

/
Area of one trapezoid = 51[F(x;)+ f(xieq)]

" b—g

H

Yo=a,xy=a+h, x,=a+2h,,x, y=a+(n—1)h, x,=b

Sum of trapezoid areas = h[f(xg)/2+ f(x1)+ f(x2) +---+ F(xn_1) + f(x0) /2]

Copyright © 2010, Elsevier Inc.
All rights Reserved

Pseudo-code for a serial program

I/ Input: a, b, B %/
h = (b—a)/n:
approx = (f(a) + £{(b))12.0;
for (i =1 ; i <= n—1; i++) {
¥ 1 = a 4+ 1ixh;
approx += f(x_1i);:

}

ApproxXx = hxapprox:

Copyright © 2010, Elsevier Inc.
All rights Reserved

Parallelizing the Trapezoidal Rule

1.

W

Partition problem solution into tasks ...
As many tasks as possible.

. Identify communication channels

between tasks.

. Aggregate tasks into composite tasks.
. Map composite tasks to cores.

Tasks and communications for

Trapezoidal Rule
Compute area Compute area Compute area
of trap 0 of trap 1 of trap n—1

Copyright © 2010, Elsevier Inc.
All rights Reserved

Parallel pseudo-code

I Get a. b. n;

2 h = (b—a)}/n;

3 local n = n/comm sz:

4 local_a = a + my_rankxlocal_n#h;

5 local b = local a + local nxh;:

6 local_integral = Trap(local_a., local_b., local_n, h);
] if (my_rank != 0)

8 Send local_ integral to process 0;

9 else /% my_rank == 0 =/
10 total integral = local integral;
11 for (proc = 1; proc < comm_sz; proc++) {
12 Receive local_integral from proc;
13 total_integral += local_integral:
14 }
15 b
16 if (my _rank == 0)
17 print result;

Copyright © 2010, Elsevier Inc.
All rights Reserved

First version (1)

1 |int main(void) |

2 int my_rank, comm_ sz, n = 1024, local_n;

3 double a = 0.0, b = 3.0, h, local a, local b;

4 double local int, total int;

5 int source;

6

7 MPI ITnit (NULL, NULL);

8 MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

9 MPT Comm_ size(MPI COMM WORLD, &comm sz);

10

Ll h = (b—a)/n: /¥ h is the same for all processes =/
12 local_ n = n/comm_sz; /% So is the number of trapezoids =/
3

14 local a = a + my_rank*local_n=#h;

15 local b = local a + local nxh;

16 local int = Trap(local a, lecal b, local m, h);

17

18 if (my_rank !'= 0) {

19 MPI Send(&local int, 1, MPI DOUBLE, 0, O,
20 MPI COMM WORLD):

Copyright © 2010, Elsevier Inc.
All rights Reserved

First version (2)

}

else |

total int

for (source
MPI Recv(&lo

loc

total _int 4=

if —

(my_rank 0)

printf("With n

printf("of the
a, b, total

}

MPI Finalize();

return 0;

b /% main %/

— l:

MPI_COMM_WORLD ,

al int:
source < COmMmM_SZ;
cal int, 1., MPI DOUBLE.

local 1nt;

{

%td trapezoids,
integral from %f to %I
_IhE 3

source++) |

0.

Jgpuree

MPI_STATUS_IGNORE);

our estimate\n",

. A56\n" .,

5 1) B

Copyright © 2010, Elsevier Inc.
All rights Reserved

First version (3)

double Trap(
double left endpt /% in */,
double right_endpt /% in =/,
int trap_count /% in =/,
double base_len /x in x/) |
double estimate. x:
int i;
estimate = (f(left_endpt) + f(right_endpt))/2.0;
for (i = 1; i <= trap_count—1;: i++) {
X = left_endpt + ixbase_ len;
estimate += f(x);
f
estimate = estimatexbase len;
return estimate:
b/« Trap +/
Copyright © 2010, Elsevier Inc.

All rights Reserved

The Final Sum ... Tree againl!

Processes

Copyright © 2010, Elsevier Inc.
All rights Reserved

An alternative tree-structured
global sum

Processes

2 3 4 5 6 7
oNcRoNoNo e
|
®

@G @@
NG ®-
&

Is this better? or the previous one?
A: Depends on the underlying system!

Copyright © 2010, Elsevier Inc.
All rights Reserved

Reduction

* Reducing a set of humbers into a smaller
set of numbers via a function
— Example: reducing the group [1, 2, 3, 4, 5]

with the sum function 2> 15

* MPI provides a handy function that
handles almost all of the common
reductions that a programmer needs to
do in a parallel application

MPI_Reduce

OE OF OF @

MPI_SUM)
\V/

O)C

Every process has an element

MPI_Reduce

@51@2\3@/’78@42

MPI_SUM)
\V/

@1814

Every process has an array of elements

has size:
sizeof(datatype) * count

MPI_Reduce

int MPI

void input_data_p /= in %/,
void output data p /x out x/,
int count

MPI Datatype datatype k */
MPI_ Op operator /T In /.
int dest_process fx TR *f,
MPI Comnm comm /% 1IN /) :

only relevant
to dest_process

Examples:

MPI Reduce(&local int, &total int, 1,
MPI COMM WOERLD);

MP1_DOCUBLE ,

MPI SUM, O,

double local x[N],

MPI Reduce(local x.
MPI CCMM WORLD):

sum|[N];

sum, N, MPI_DOUBLE, MPI_SUM, 0,

Copyright © 2010, Elsevier Inc.
All rights Reserved

MPI_Reduce is called by all processes involved.

This is why it is called collective call.

Predefined reduction operators in MPT

Operation Value | Meaning

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical and

MPI_BAND Bitwise and

MPI_LOR Logical or

MPI_BOR Bitwise or

MPI_LXOR Logical exclusive or

MPI_BXOR Bitwise exclusive or

MPI_MAXLOC Maximum and location of maximum
MPI_MINLOC Minimum and location of minimum

Copyright © 2010, Elsevier Inc.
All rights Reserved

Location = rank of the process that owns it

Collective vs. Point-to-Point
Communications

* All the processes in the communicator

must call the same collective function.

— For example, a program that attempts to
match a call to MPI_Reduce on one process
with a call to MPI_Recv on another process is
erroneous.

« The arguments passed by each process to
an MPT collective communication must be
“compatible.”

— For example, if one process passes in O as the
dest_process and another passes in 1, then the
outcome of a call to MPI_Reduce is erroneous.

Collective vs. Point-to-Point
Communications

* The output_data_p argument is only
used on dest_process.

* However, all of the processes still need
to pass in an actual argument

corresponding to output_data_p, even if
iT's just NULL.

* All collective communication calls are
blocking.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Collective vs. Point-to-Point
Communications

» Point-to-point communications are
matched on the basis of tags and
communicators.

» Collective communications don't use
tags.

» They're matched solely on the basis of
the communicator and the order in
which they're called.

Example

Time || Process Process 1 Process 2
0 3= AE 8= 3 a=lEigsg g =17 g =2
| MPI Reduce(&a, &b, ...) | MPI_Reduce(&c, &d, MPI Reduce(&a, &b,
2 MPI_ Reduce(&c, &d, ...) | MPI_Reduce(&a, &b, MPI Reduce (&c, &d,

Assume:

- all processes use the operator MPT_SUM
* destination is process O

What will be the final values of b and d??

Copyright © 2010, Elsevier Inc.
All rights Reserved

Yet Another Example

MPI_Reduce(&x, &x, 1, MPI_DOUBLE, MPI_SUM, O, comm);

This is illegal in MPI and the result is non-predictablel

MPI_Allreduce

 Useful in a situation in which all of the
processes need the result of a global
sum in order to complete some larger
computation.

int MPI Allreduce(

void = input_data_p I+ in %/,

void = output_data_p /+ out =/,

int count I8 T

MPI_Datatype datatype lx In x=/,

MPI_Op operator fx N *f;

MPI Comm C oMM [+ In T
Copyright © 2010, Elsevier Inc. No destination argument!

All rights Reserved

Broadcast

 Data belonging to a single process is
sent to all of the processes in the
communicator.

int MPI Bcast (

void = data p f2 Tnlout s,
int count /+ 0N

MPI Datatype datatype S% 1IN

int source_proc [+ 0N

MPI Comm comm f% In e

A A

ALL processes in the communicator must call MPIl_Bcast()

Copyright © 2010, Elsevier Inc.
All rights Reserved

A tree-structured broadcast.

Processes

Copyright © 2010, Elsevier Inc.
All rights Reserved

A version of Get_input that uses
MPI Bcast

void GCet input/(

int my_rank /% in %/,
int comm_sz /¥ in %/,
doublesx a2 p [+ out =/,
double+ b p fx Ouf »f
int# i p Fa: ont »4) 4

if (my_rank == 0) {
printf("Enter a, b, and n\n"):
scanf("%1f %$1f Rd", a p; b'p, np)l

L

b

MPI Bcast(a_p, 1, MPI DOUBLE, 0, MPI_ COMM WORLD);
MPI Bcast(b_], MPT DOUBLE., 0, MPI_COMM_WORLD);:
MPI Bcast(n_p, 1, MPI_INT, O, MPI_COMM WORLD);

} /%= Get_input =/

e

Copyright © 2010, Elsevier Inc.
All rights Reserved

Conclusions

« A communicator is a collection of
processes that can send messages to
each other.

* Collective communications involve all the
processes in a communicator.

* When studying MPI be careful of the
caveats (i.e. usage that leads to crash,
nondeterministic behavior, ...).

Copyright © 2010, Elsevier Inc.
All rights Reserved

