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Lecture 7: MPI - I 

Many slides of this 
lecture are adopted 

and slightly modified from: 
• Gerassimos Barlas 
• Peter  S.  Pacheco 



This is What We Target With MPI 
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We will talk about processes 



We Will Study OpenMP for This 
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We will talk about Threads 



MPI processes 

• Identify processes by non-negative 
integer ranks. 
 

• p processes are numbered 0, 1, 2, .. p-1 
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Compilation 
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mpicc  -g  -Wall –std=c99 -o  mpi_hello  mpi_hello.c 

wrapper script to compile 

turns on all warnings 

source file 

create this executable file name 

(as opposed to default a.out) 

produce 
debugging  

information 

MPI is NOT a language. 
Just libraries called from 
C/C++, Fortran, and any  

language that can call libraries from those. 

use C lang. updated standard 



Execution 
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mpiexec  -n  <number of processes>   <executable> 

mpiexec  -n  1  ./mpi_hello 

mpiexec  -n  4  ./mpi_hello 

run with 1 process 

run with 4 processes You can use 
mpirun instead 

of mpiexec 
and  -np instead of -n. 



Our first MPI program 



Our first MPI program 



Execution 
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mpiexec  -n  1  ./mpi_hello 

mpiexec  -n  4  ./mpi_hello 

Greetings from process 0 of 1 ! 

Greetings from process 0 of 4 ! 

Greetings from process 1 of 4 ! 

Greetings from process 2 of 4 ! 

Greetings from process 3 of 4 ! 



MPI Programs 
• Used mainly with C/C++ and Fortran 

– With some efforts with other languages going 
on and off. 

– But any language that can call libraries from 
the above can use MPI capabilities. 

• Need to add mpi.h header file. 
• Identifiers defined by MPI start with 

“MPI_”. 
– First letter following underscore is uppercase. 

• For function names and MPI-defined types. 
• Helps to avoid confusion. 

– All letters following underscore are uppercase. 
• MPI defined macros 
• MPI defined constants 



MPI Components 

Tells MPI to do all the necessary setup. 
No MPI functions should be called before this. 

Pointers to 
the two arguments 
of main() 



MPI Components 
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•Tells MPI we’re done, so clean up anything allocated for  
  this program. 
• No MPI function should be called after this. 
 



Basic Outline 
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Communicators  
• A collection of processes that can send 

messages to each other. 

• MPI_Init defines a communicator that 
consists of all the processes created 
when the program started. 

• Called MPI_COMM_WORLD. 
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Communicators 
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number  of processes in the communicator 

my rank  
(rank of the process making this call) 

MPI_COMM_WORLD for now 



Communication 
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rank of the receiving process 
To distinguish messages 

Message sent by a process using one communicator cannot be 
received by a process in another communicator. 

num of elements in 
msg_buf 

type of each 
element in 
msg_buf 



Data types 
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Communication 
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Message matching 
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MPI_Send 

src = q 

MPI_Recv 

dest  = r 

r 

q 

recv_buf_sz 
>= 

send_buf_sz 



Scenario 1 

What if process 2 message 
arrives before process 1? 



Scenario 1 

Wildcard: MPI_ANY_SOURCE 
 
The loop will then be: 
 
for(q = 1; q < comm_sz; q++) { 
 MPI_Recv(result, result_sz, result_type, 

MPI_ANY_SOURCE, 
   tag, comm, MPI_STATUS_IGNORE); 
} 



Scenario 2 

   What if process 1 sends to process 0 
several messages but they arrive out of 
order. 
– Process 0 is waiting for a message with tag 

= 0 but tag = 1 message arrives instead! 



Scenario 2 

Wildcard: MPI_ANY_TAG 
 
The loop will then be: 
 
for(q = 1; q < comm_sz; q++) { 
 MPI_Recv(result, result_sz, result_type, 

q, 
   MPI_ANY_TAG, comm, 

MPI_STATUS_IGNORE); 
} 



Receiving messages 

• A receiver can get a message without 
knowing: 
– the amount of data in the message, 

– the sender of the message, 

– or the tag of the message. 
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How will the output be different if .. 

•use MPI_ANY_SOURCE 
•MPI_ANY_TAG 



status  argument 
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MPI_SOURCE 

MPI_TAG 

MPI_ERROR 

MPI_Status* 

a struct 

MPI_Status*  status; 

 

status.MPI_SOURCE 

status.MPI_TAG 



How much data am I receiving? 
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Issues 

• MPI_Send() is implementation 
dependent: can buffer or block .. or 
both! 

• MPI_Recv() always blocks 
–  So, if it returns we are sure the message 

has been received. 

–  Be careful: don’t make it block forever! 



Conclusions 

• MPI is the choice when we have 
distributed memory organization. 

• It depends on messages. 

• Your goal: How to reduce messages yet 
increase concurrency?  


