
Parallel Computing

Mohamed Zahran (aka Z)

mzahran@cs.nyu.edu

http://www.mzahran.com

CSCI-UA.0480-003

Lecture 7: MPI - I

Many slides of this
lecture are adopted

and slightly modified from:
• Gerassimos Barlas
• Peter S. Pacheco

This is What We Target With MPI

Copyright © 2010, Elsevier Inc.
All rights Reserved

We will talk about processes

We Will Study OpenMP for This

Copyright © 2010, Elsevier Inc.
All rights Reserved

We will talk about Threads

MPI processes

• Identify processes by non-negative
integer ranks.

• p processes are numbered 0, 1, 2, .. p-1

Copyright © 2010, Elsevier Inc.
All rights Reserved

Compilation

Copyright © 2010, Elsevier Inc.
All rights Reserved

mpicc -g -Wall –std=c99 -o mpi_hello mpi_hello.c

wrapper script to compile

turns on all warnings

source file

create this executable file name

(as opposed to default a.out)

produce
debugging

information

MPI is NOT a language.
Just libraries called from
C/C++, Fortran, and any

language that can call libraries from those.

use C lang. updated standard

Execution

Copyright © 2010, Elsevier Inc.
All rights Reserved

mpiexec -n <number of processes> <executable>

mpiexec -n 1 ./mpi_hello

mpiexec -n 4 ./mpi_hello

run with 1 process

run with 4 processes You can use
mpirun instead

of mpiexec
and -np instead of -n.

Our first MPI program

Our first MPI program

Execution

Copyright © 2010, Elsevier Inc.
All rights Reserved

mpiexec -n 1 ./mpi_hello

mpiexec -n 4 ./mpi_hello

Greetings from process 0 of 1 !

Greetings from process 0 of 4 !

Greetings from process 1 of 4 !

Greetings from process 2 of 4 !

Greetings from process 3 of 4 !

MPI Programs
• Used mainly with C/C++ and Fortran

– With some efforts with other languages going
on and off.

– But any language that can call libraries from
the above can use MPI capabilities.

• Need to add mpi.h header file.
• Identifiers defined by MPI start with

“MPI_”.
– First letter following underscore is uppercase.

• For function names and MPI-defined types.
• Helps to avoid confusion.

– All letters following underscore are uppercase.
• MPI defined macros
• MPI defined constants

MPI Components

Tells MPI to do all the necessary setup.
No MPI functions should be called before this.

Pointers to
the two arguments
of main()

MPI Components

Copyright © 2010, Elsevier Inc.
All rights Reserved

•Tells MPI we’re done, so clean up anything allocated for
 this program.
• No MPI function should be called after this.

Basic Outline

Copyright © 2010, Elsevier Inc.
All rights Reserved

Communicators
• A collection of processes that can send

messages to each other.

• MPI_Init defines a communicator that
consists of all the processes created
when the program started.

• Called MPI_COMM_WORLD.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Communicators

Copyright © 2010, Elsevier Inc.
All rights Reserved

number of processes in the communicator

my rank
(rank of the process making this call)

MPI_COMM_WORLD for now

Communication

Copyright © 2010, Elsevier Inc.
All rights Reserved

rank of the receiving process
To distinguish messages

Message sent by a process using one communicator cannot be
received by a process in another communicator.

num of elements in
msg_buf

type of each
element in
msg_buf

Data types

Copyright © 2010, Elsevier Inc.
All rights Reserved

Communication

Copyright © 2010, Elsevier Inc.
All rights Reserved

Message matching

Copyright © 2010, Elsevier Inc.
All rights Reserved

MPI_Send

src = q

MPI_Recv

dest = r

r

q

recv_buf_sz
>=

send_buf_sz

Scenario 1

What if process 2 message
arrives before process 1?

Scenario 1

Wildcard: MPI_ANY_SOURCE

The loop will then be:

for(q = 1; q < comm_sz; q++) {
 MPI_Recv(result, result_sz, result_type,

MPI_ANY_SOURCE,
 tag, comm, MPI_STATUS_IGNORE);
}

Scenario 2

 What if process 1 sends to process 0
several messages but they arrive out of
order.
– Process 0 is waiting for a message with tag

= 0 but tag = 1 message arrives instead!

Scenario 2

Wildcard: MPI_ANY_TAG

The loop will then be:

for(q = 1; q < comm_sz; q++) {
 MPI_Recv(result, result_sz, result_type,

q,
 MPI_ANY_TAG, comm,

MPI_STATUS_IGNORE);
}

Receiving messages

• A receiver can get a message without
knowing:
– the amount of data in the message,

– the sender of the message,

– or the tag of the message.

Copyright © 2010, Elsevier Inc.
All rights Reserved

How will the output be different if ..

•use MPI_ANY_SOURCE
•MPI_ANY_TAG

status argument

Copyright © 2010, Elsevier Inc.
All rights Reserved

MPI_SOURCE

MPI_TAG

MPI_ERROR

MPI_Status*

a struct

MPI_Status* status;

status.MPI_SOURCE

status.MPI_TAG

How much data am I receiving?

Copyright © 2010, Elsevier Inc.
All rights Reserved

Issues

• MPI_Send() is implementation
dependent: can buffer or block .. or
both!

• MPI_Recv() always blocks
– So, if it returns we are sure the message

has been received.

– Be careful: don’t make it block forever!

Conclusions

• MPI is the choice when we have
distributed memory organization.

• It depends on messages.

• Your goal: How to reduce messages yet
increase concurrency?

