
Parallel Computing

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu

http://www.mzahran.com

CSCI-UA.0480-003

Lecture 6: Performance Analysis

Defining Performance
• Which airplane has the best performance?

0 100 200 300 400 500

Douglas
DC-8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Passenger Capacity

0 2000 4000 6000 8000 10000

Douglas DC-
8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Cruising Range (miles)

0 500 1000 1500

Douglas
DC-8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Cruising Speed (mph)

0 100000 200000 300000 400000

Douglas DC-
8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Passengers x mph

• For some program running on machine X,

PerformanceX = 1 / Execution timeX

• "X is n times faster than Y"

PerformanceX / PerformanceY = n

Standard Definition of Performance

 Example: time taken to run a program
 10s on A, 15s on B
 Execution TimeB / Execution TimeA

= 15s / 10s = 1.5
 So A is 1.5 times faster than B

Speedup
• Number of cores = p
• Serial run-time = Tserial

• Parallel run-time = Tparallel

Copyright © 2010, Elsevier Inc.
All rights Reserved

Tserial

Tparallel

S =

Example

Processor 1

time

100

time

1 2 3 4

25 25 25 25 time

1 2 3 4

35 35 35 35

,0.4
25

100
pS

 balancing loadperfect

,85.2
35

100
pS

Perfect parallelization!
Does it ever occur?

synch cost

Example (cont.)

time

1 2 3 4

30 20 40 10
time

1 2 3 4

50 50 50 50

imbalance load

,5.2
40

100
pS

cost sync and

imbalance load

,0.2
50

100
pS

closest to
real life

parallel programs

Processor 1

time

100

A Glimpse at the Top 500

Rmax: Maximal achieved
Rpeak: Theoretical peak

Sources of Parallel Overheads

• Overhead of creating
threads/processes

• Synchronization
• Load imbalance
• Communication
• Extra computation
• Memory access (for both sequential and

parallel!)

Efficiency of a parallel program

Copyright © 2010, Elsevier Inc.
All rights Reserved

E =

Tserial

Tparallel

S

p
=

p

Be Careful about T
• Both Tseq and Tpar are wall-clock times, and as

such they are not objective. They can be
influenced by :
– The skill of the programmer who wrote the

implementations
– The choice of compiler (e.g. GNU C++ versus Intel

C++)
– The compiler switches (e.g. turning optimization

on/off)
– The operating system
– The type of filesystem holding the input data (e.g.

EXT4, NTFS, etc.)
– The time of day... (different workloads, network

traffic, etc.)

Speedup

Copyright © 2010, Elsevier Inc.
All rights Reserved

Efficiency

Copyright © 2010, Elsevier Inc.
All rights Reserved

Scalability
 Scalability is the ability of a (software or

hardware) system to handle a growing amount
of work efficiently.

• If we keep the efficiency fixed by increasing
the number of processes/threads and without
increasing problem size, the problem is
strongly scalable.

• If we keep the efficiency fixed by increasing
the problem size at the same rate as we
increase the number of processes/threads,
the problem is weakly scalable.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Let’s take a closer look at timing.

Taking Timings

• What is time?
• Start to finish?
• A program segment of interest?
• CPU time?
• Wall clock time?

Copyright © 2010, Elsevier Inc.
All rights Reserved

• Elapsed Time
– counts everything (disk and memory accesses,

I/O , etc.)
– a useful number, but often not good for

comparison purposes
• CPU time

– doesn't count I/O or time spent running other
programs

– can be broken up into system time, and user time

• Our focus: user CPU time
– time spent executing the lines of code that are

"in" our program

Execution Time

Execution Time (Elapsed Time)

I/O Time Disk and Memory timeCPU Time

User CPU Time System CPU Time

Taking Timings
In Linux:
time prog

Returns
real Xs
user Ys
sys Zs

Inside your C program:
clock_t clock(void)returns the number of clock ticks elapsed
since the program started

#include <time.h>
#include <stdio.h>

int main() {
clock_t start, end, total;
int i;

start = clock();

for(i=0; i< 10000000; i++) { }

end = clock();
total= (double)(end – start) / CLOCKS_PER_SEC;

printf("Total time taken by CPU: %f\n", total);
}

Let’s Look at Two Simple Metrics

• Response time (aka Execution Time)
– The time between the start and completion

of a task
• Throughput

– Total amount of work done in a given time

What is the relationship between execution time and throughput?

Timing for sequential programs

IPC
MIPS

CPI

Execution
Time

insts

seconds

program

cycles

program

seconds

cycle

ET
IC * CPI

CT

ET = IC X CPI X CT

ET = Execution Time
CPI = Cycles Per Instruction
IC = Instruction Count

Execution time for sequential program:

Example
A program runs in 10 seconds on computer A, which has a 4 GHz.

clock. We are trying to help a computer designer build a new
machine B, that will run this program in 6 seconds. The designer
can use new (or perhaps more expensive) technology to
substantially increase the clock rate, but has informed us that this
increase will affect the rest of the CPU design, causing machine B
to require 1.2 times as many clock cycles as machine A for the same
program. What clock rate should we tell the designer to target?“

CPI Example
• Suppose we have two implementations of the same instruction

set architecture (ISA).

For some program,
Machine A has a clock cycle time of 250 ps and a CPI of 2.0
Machine B has a clock cycle time of 500 ps and a CPI of 1.2
What machine is faster for this program, and by how much?

[10-3 = milli, 10-6 = micro, 10-9 = nano, 10-12 = pico, 10-15 = femto]

#Instructions Example
• A compiler designer is trying to decide between two code sequences

for a particular machine. Based on the hardware implementation,
there are three different classes of instructions: Class A, Class B,
and Class C, and they require one, two, and three cycles
(respectively).

The first code sequence has 5 instructions:
2 of A, 1 of B, and 2 of C

The second sequence has 6 instructions:
4 of A, 1 of B, and 1 of C.

Which sequence will be faster? How much?
What is the CPI for each sequence?

MIPS Example
• Two different compilers are being tested for a 4 GHz. machine

with three different classes of instructions: Class A, Class B,
and Class C, which require one, two, and three cycles
(respectively). Both compilers are used to produce code for a
large piece of software.

The first compiler's code uses 5 million Class A instructions, 1
million Class B instructions, and 1 million Class C instructions.

The second compiler's code uses 10 million Class A instructions,
1 million Class B instructions, and 1 million Class C instructions.

• Which sequence will be faster according to MIPS?
• Which sequence will be faster according to execution time?

Pitfalls in timing in Parallel
Machines

For Multithreaded Programs
• You need to decide: Shall we use execution

time or throughput? or both?
• IPC is not accurate here

– small timing variations may lead to different
execution

– Order at which threads enter critical section may
vary

– Different interrupt timing may lead to different
scheduling decisions

The total number of instructions executed may
be different across different runs!

For Multithreaded Programs
The total number of instructions executed may be different
across different runs!

This effect increases with
the number of cores

System-level code account for a significant fraction of the
total execution time

Your Program Does Not Run in A Vacuum

• OS at least is there.
• Multi-programming and/or mulithreading

setting is very common in multicore
settings

• Independent programs affect each
other performance (why?)

How to check the performance of
a parallel machine?

• Performance best determined by running a real
application
– Use programs typical of expected workload
– Or, typical of expected class of applications
– e.g., compilers/editors, scientific applications, graphics, etc.

• Small benchmarks
– nice for architects and designers
– easy to standardize

• Parallel Benchmarks: PARSEC, Rodinia, SPLASH-2
• SPEC (System Performance Evaluation Cooperative)

– companies have agreed on a set of real program and inputs
– valuable indicator of performance (and compiler technology)

Benchmarks

Role of Benchmarks
• help designer explore architectural

designs
• identify bottlenecks
• compare different systems
• conduct performance prediction

Example: PARSEC
• Princeton Application Repository for Shared-Memory

Computers
• Benchmark Suite for Chip-Multiprocessors
• Freely available at: http://parsec.cs.princeton.edu/
• Objectives:

– Multithreaded Applications: Future programs must run on
multiprocessors

– Emerging Workloads: Increasing CPU performance enables
new applications

– Diverse: Multiprocessors are being used for more and more
tasks

– State-of-Art Techniques: Algorithms and programming
techniques evolve rapidly

Example: PARSEC
Program Application Domain Parallelization
Blackscholes Financial Analysis Data-parallel
Bodytrack Computer Vision Data-parallel
Canneal Engineering Unstructured
Dedup Enterprise Storage Pipeline
Facesim Animation Data-parallel
Ferret Similarity Search Pipeline
Fluidanimate Animation Data-parallel
Freqmine Data Mining Data-parallel
Streamcluster Data Mining Data-parallel
Swaptions Financial Analysis Data-parallel
Vips Media Processing Data-parallel
X264 Media Processing Pipeline

Example: Rodinia

• A Benchmark Suite for Heterogeneous
Computing: multicore CPU and GPU

• University of Virginia

Conclusions
• Performance evaluation is very important to assess

programming quality as well as the underlying
architecture and how they interact.

• The following capture some aspects of the system but
do not represent overall performance: MIPS,
#instructions, #cycles, frequency

• Execution time is what matters: system time, CPU time,
I/O and memory time

– To know whether your execution time is good, you need to compare it with
sequential code, another parallel code, etc.

• Scalability and efficiency measure the quality of your code.

