CSCI-UA.0480-003
Parallel Computing

Lecture 6: Performance Analysis

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com

Defining Performance

e Which airplane has the best performance?

Boeing 777 Boeing 777
Boeing 747 Boeing 747
BAC/Sud BAC/Sud
Concorde Concorde
Douglas Douglas DC-
DC-8-50 8-50
0 100 200 300 400 500 0 2000 4000 6000 8000 10000
E Passenger Capacity E Cruising Range (miles) |
Boeing 777 Boeing 777
Boeing 747 Boeing 747
BAC/Sud BAC/Sud
Concorde Concorde
Douglas Douglas DC-
DC-8-50 8-50
0 500 1000 1500 0 100000 200000 300000 400000
E Cruising Speed (mph) | E Passengers x mph

Standard Definition of Performance

» For some program running on machine X,

Performance, = 1 / Execution timey

- "X is n times faster than Y"

Performancey / Performance, = n

m Example: time taken to run a program
= 10sonA, 15s0onB

= Execution Time; / Execution Time,
=15s/10s=1.5
= So Ais 1.5 times faster than B

Speedup
* Number of cores = p
 Serial run-time = T_,..,
 Parallel run-time = T

parallel

T

S = serial

T

parallel

Copyright © 2010, Elsevier Inc.
All rights Reserved

Example

A A 4
100
35353535 synch cost
time time[25 25 2525 t'meW/
> > 1234
Processor 1 1234
100
S, =—=4.0, 100
25 S, =——=285,
Perfect parallelization! 35

Does it ever occur? perfect load balancing

Example (cont.)

A A A

100 closest to
50 5050 50 real life
30 204010
time time time A/parallel programs
. 1,
Processor 1 1234
100
100 S , == 2.0,
Sp — 4—0 — 25, 50
, load imbalance
load imbalance

and sync cost

Rank System Cores

1

Sunway TaihuLight - Sunway MPF, Sunway SW26010 10,649,600
260C 1.45GHz, Sunway [/system/178764), NRCPC

National Supercomputing Center in Wuxi (/site/50623)

China

Tianhe-2 [MilkyWay-2] - TH-IVB-FEP Cluster, Intel 3,120,000
Xeon E5-26%2 12C 2.200GHz, TH Express-2, Intel Xeon

Phi 31S1P (/system/177999), NUDT

National Super Computer Center in Guangzhou

[/site/50365)

China

Piz Daint - Cray XC50, Xeon E5-26%90v3 12C 2.6GHz, 361,760
Aries interconnect , NVIDIA Tesla P100

(/system/177824), Cray Inc.

Swiss National Supercomputing Centre [CSCS])

[/site/50422)

Switzerland

Gyoukou - ZettaScaler-2.2 HPC system, Xeon D-1571 19,860,000
16C 1.3GHz, Infiniband EDR, PEZY-5C2 700Mhz

(/system/179102), ExaScaler

Japan Agency for Marine-Earth Science and

Technology /site/49318]

Rmax: Maximal achieved
Rpeak: Theoretical peak

Rmax
(TFlop/s)

23,014.6

33,862.7

19,590.0

19,135.8

Rpeak
(TFlop/s)

125,435.9

04,902.4

25,326.3

28,192.0

A Glimpse at the Top 500

Power
(kW)

15,371

17,808

2,272

1,350

Sources of Parallel Overheads

» Overhead of creating
threads/processes

 Synchronization

* Load imbalance

« Communication

« Extra computation

* Memory access (for both sequential and
parallell)

Efficiency of a parallel program

seria

S

[l
-
N

-
-

Copyright © 2010, Elsevier Inc.
All rights Reserved

Be Careful about T

* Both T, and T,,. are wall-clock times, and as
such they are not objective. They can be
influenced by :

— The skill of the programmer who wrote the

implementations

— 'Cl'he) choice of compiler (e.g. GNU C++ versus Intel
++

— The compiler switches (e.g. turning optimization
on/off)

— The operating system

— The type of filesystem holding the input data (e.q.
EXT4 NTFS, efc) I et 7

— The time of day... (different workloads, network
traffic, etc.)

Speedup

16 .

—x— Half size
14 |- | —+— Original
—e— Double size

Speedup

Processes

Copyright © 2010, Elsevier Inc.
All rights Reserved

Efficiency

S o0 o o 9
O o N o © =
[

© o o
N w D
T T

o
-—

o

Efficie

ncy

—x— Half size
—+— Orriginal
—e— Double size

2 4

Copyright © 2010, Elsevier Inc.

All rights Reserved

8
Processes

10

12

14

16

Scalability

. Scalability is the ability of a (software or
hardware) system to handle a growing amount
of work efficiently.

» If we keep the efficiency fixed by increasing
the number of processes/threads and without
increasing problem size, the problem is
strongly scalable.

» If we keep the efficiency fixed by increasing
the problem size at the same rate as we
increase the number of processes/threads,
the problem is weakly scalable.

Let's take a closer look at timing.

Taking Timings

What is time?
Start to finish?
A program segment of m‘reres’r?
CPU time? —_
Wall clock time?

Execution Time

* Elapsed Time

- counts everything (disk and memory accesses,
I/0, etc.)

- a useful number, but often not good for
comparison purposes

« CPU time

- doesn't count I/0 or time spent running other
programs

- can be broken up into system time, and user time

» Our focus: user CPU time

- time spent executing the lines of code that are

in" our program

Execution Time (Elapsed Time)

e

I/0 Time CPU Time Disk and Memory time

N

User CPU Time System CPU Time

In Linux:
time prog

Returns
real Xs
user Ys
sys /s

Taking Timings

clock_t clock(void)returns the number of clock ticks elapsed
since the program started

H#include <time.h>
H#include <stdio.h>

int main() {
clock t start, end, total;
inti;
start = clock();

for(i=0; i< 10000000; i++) { }

end = clock();
total= (double)(end — start) / CLOCKS_PER_SEC;

printf("Total time taken by CPU: %f\n", total);

Let's Look at Two Simple Metrics

Response time (aka Execution Time)

— The time between the start and completion
of a task

* Throughput
— Total amount of work done in a given time

What is the relationship between execution tfime and throughput?

Timing for sequential programs

0 Execution

Execution time for sequential program:

ET

seconds cycles seconds
= X
program program cycle

CT
IC* CPI

ET=IC X CPI X CT

ET = Execution Time
CPI = Cycles Per Instruction
IC = Instruction Count

Example

A program runs in 10 seconds on computer A, which has a 4 GHz.

clock. We are trying to help a computer designer build a new
machine B, that will run this program in 6 seconds. The designer
can use new (or perhaps more expensive) technology to
substantially increase the clock rate, but has informed us that this
increase will affect the rest of the CPU design, causing machine B
to require 1.2 times as many clock cycles as machine A for the same
program. What clock rate should we tell the designer to target?“

CPI Example

 Suppose we have two implementations of the same instruction
set architecture (ISA).

For some A{:r'ogr'am
Machine A has a clock cycle time of 250 ps and a CPI of 2.0

Machine B has a clock cycle time of 500 ps and a CPI of 1.2
What machine is faster for this program, and by how much?

[10-3 = milli, 106 = micro, 10 = nano, 102 = pico, 101> = femto]

#Instructions Example

A compiler designer is trying to decide between two code sequences
for a particular machine. Based on the hardware implementation,
there are three different classes of instructions: Class A, Class B,
and Class C, and they require one, two, and three cycles

(respectively).

The first code sequence has 5 instructions:
20of A, 1of B,and 2 of C

The second sequence has 6 instructions:
4 of A,10f B,and 1 of C.

Which sequence will be faster? How much?
What is the CPI for each sequence?

MIPS Example

- Two different compilers are being tested for a 4 GHz. machine
with three different classes of instructions: Class A, Class B,
and Class C, which require one, two, and three cycles
(respectively). Both compilers are used to produce code for a
large piece of software.

The first compiler's code uses 5 million Class A instructions, 1
million Class B instructions, and 1 million Class C instructions.

The second compiler's code uses 10 million Class A instructions,
1 million Class B instructions, and 1 million Class C instructions.

« Which sequence will be faster according to MIPS?
« Which sequence will be faster according to execution time?

Pitfalls in timing in Parallel
Machines

For Multithreaded Programs

* You heed to decide: Shall we use execution
time or throughput? or both?

« TPC is not accurate here

— small timing variations may lead to different
execution

— Order at which threads enter critical section may
vary

— Different interrupt timing may lead to different
scheduling decisions

The total humber of instructions executed may
be different across different runs!

For Multithreaded Programs

The total number of instructions executed may be different
across different runs!

This effect increases with
the number of cores

System-level code account for a significant fraction of the
total execution time

Your Program Does Not Run in A Vacuum

 OS at least is there.

* Multi-programming and/or mulithreading
setting is very common in multicore
settings

» Independent programs affect each
other performance (why?)

How to check the performance of
a parallel machine?

Benchmarks

Performance best determined by running a real
application

- Use programs typical of expected workload

- Or, typical of expected class of applications

- e.g., compilers/editors, scientific applications, graphics, etc.
Small benchmarks

- nice for architects and designers

- easy to standardize

Parallel Benchmarks: PARSEC, Rodinia, SPLASH-2

SPEC (System Performance Evaluation Cooperative)
- companies have agreed on a set of real program and inputs
- valuable indicator of performance (and compiler technology)

Role of Benchmarks

* help designer explore architectural
designs

» identify bottlenecks
 compare different systems
» conduct performance prediction

Example: PARSEC

Princeton Application Repository for Shared-Memory
Computers

Benchmark Suite for Chip-Multiprocessors

Freely available at: http://parsec.cs.princeton.edu/
Objectives:

— Multithreaded Applications: Future programs must run on

multiprocessors

— Emerging Workloads: Increasing CPU performance enables
new applications

— Diverse: Multiprocessors are being used for more and more
tasks

— State-of-Art Techniques: Algorithms and programming
techniques evolve rapidly

Example: PARSEC

Program Application Domain Parallelization
Blackscholes Financial Analysis Data-paraliel
Bodytrack Computer Vision Data-paraliel
Canneal Engineering Unstructured
Dedup Enterprise Storage Pipeline
Facesim Animation Data-parallel
Ferret Similarity Search Pipeline
Fluidanimate Animation Data-paraliel
Fregmine Data Mining Data-parallel
Streamcluster Data Mining Data-parallel
Swaptions Financial Analysis Data-parallel
Vips Media Processing Data-parallel
X264 Media Processing Pipeline

Example: Rodinia

» A Benchmark Suite for Heterogeneous
Computing: multicore CPU and GPU

» University of Virginia

Application / Kernel Dwarf Domain
K.-means Dense Linear Algebra Data Mining
Needleman-Wunsch Dynamic Programming Bioinformatics
HotSpot® Structured Grid Physics Simulation
Back Propagation®* Unstructured Grid Pattern Recognition
SRAD Structured Grid Image Processing
Leukocyte Tracking Structured Grid Medical Imaging
Breadth-First Search* Graph Traversal Graph Algorithms
Stream Cluster® Dense Linear Algebra Data Mining
Similarity Scores® MapReduce Web Mining

Conclusions

Performance evaluation is very important to assess
programming quality as well as the underlying
architecture and how they interact.

The following capture some aspects of the system but

do not represent overall performance: MIPS,
#instructions, #cycles, frequency

Execution time is what matters: system time, CPU time,
I/0 and memory time

— To know whether your execution time is good, you need to compare it with
sequential code, another parallel code, etc.

Scalability and efficiency measure the quality of your code.

