
Parallel Computing

Mohamed Zahran (aka Z)

mzahran@cs.nyu.edu

http://www.mzahran.com

CSCI-UA.0480-003

Lecture 5: Parallel Software: Advanced

Concurrency Vs Parallelism:
Same Meaning?

• Concurrency: At least two tasks are
making progress at the same time frame.
– Not necessarily at the same time
– Include techniques like time-slicing
– Can be implemented on a single processing unit
– Concept more general than parallelism

• Parallelism: At least two tasks execute
literally at the same time.
– Requires hardware with multiple processing

units

Simply Speaking

Questions!

If we have as much hardware as we want,
do we get as much parallelism as we wish?

If we have 2 cores, do we get 2x speedup?

Amdahl’s Law

• How much of a speedup one
could get for a given
parallelized task?

Gene M. Amdahl

If F is the fraction of a calculation that
is sequential then the maximum
speed-up that can be achieved by
using P processors is 1/(F+(1-F)/P)

parallelizable

1CPU 2CPUs 3CPUs 4CPUs

What Was Amdahl Trying to Say?

• Don’t invest blindly on large number of
processors.

• Having faster core (or processor at his
time) makes more sense than having
many cores.

 Was he right?
• At his days (the law appeared 1967) many programs
 have long sequential parts.
• This is not necessarily the case nowadays.
• It is not very easy to find F (sequential portion)

So …

• Decreasing the serialized portion is of greater importance
than adding more cores

• Only when a program is mostly parallelized, does adding
more processors help more than parallelizing the remaining
rest

• Amdahl does not take into account:

– The overhead of synchronization, communication, OS,
etc.

– Load may not be balanced among cores

• So you have to use this law as guideline and theoretical
bound only.

DAG Model for Multithreading
Work: total amount of time spent on all instructions

Tp = The fastest possible execution time on P processors

DAG Model for Multithreading

Span: The longest path of dependence in the DAG
 = T∞

Can We Define Parallelism Now?

How about?

Ratio of work to span

Can We Define Parallelism Now?

Assume every
node is an instruction

that takes 1 cycle.

Programming Model

• Definition: the languages and libraries that create
an abstract view of the machine

• Control
– How is parallelism created?
– How are dependencies enforced?

• Data
– Shared or private?
– How is shared data accessed or private data

communicated?
• Synchronization

– What operations can be used to coordinate parallelism
– What are the atomic (indivisible) operations?

It Is Important to Note

• You can run any paradigm on any hardware

• The hardware itself can be heterogeneous

The whole challenge of parallel programming

is to make the best use of the underlying hardware to
exploit the different type of parallelisms

Example

 We have a matrix A. We need to form
another matrix Asqr that contains the
square of each element of A. Then we
need to calculate S, which is the sum of
the elements in Asqr.

A:

Asqr:

sum

s:

square •How can we parallelize this?
•How long will it take if we have
 unlimited number of processors?

slide derived from Katherine Yelick

Example

• First, decompose your problem into a set
of tasks
– There are many ways of doing it.
– Tasks can be of the same, different, or

undetermined sizes.

• Draw a task-dependency graph (do you
remember the DAG we saw earlier?)
– A directed graph with Nodes corresponding to

tasks
– Edges indicating dependencies,

that the result of one task is required
for processing the next.

slide derived from Katherine Yelick

Example

A:

Asqr:

sum

s:

square

sqr (A[0]) sqr(A[1]) sqr(A[2]) sqr(A[n])

sum

…

slide derived from Katherine Yelick

Does your knowledge of the
underlying hardware change
your task dependency graph?

If yes, how?

Where do we lose
performance?

Sources of Performance Loss
in Parallel Programs

• Extra overhead
– synchronization
– communication

• Artificial dependencies
– Hard to find
– May introduce more bugs
– A lot of effort to get rid of

• Contention due to hardware resources
• Coherence
• Load imbalance

Artificial Dependencies

int result;
//Global variable

for (...) // The OUTER loop
 modify_result(...);
 if(result > threshold)
 break;

void modify_result(...)
 ...
 result = ...

What is wrong with
that program when
we try to parallelize

it?

Coherence

• Extra bandwidth (scarce resource)

• Latency due to the protocol

• False sharing

Load Balancing

Time

Load imbalance is more severe as the number synchronization points increases.

Load Balancing

• If you cannot eliminate it, at least
reduce it.

• Static assignment

• Dynamic assignment
– Has its overhead

There are several ways for
parallelizing an algorithm … depending

on the problem at hand.

What are these ways (or patterns)?

Patterns in Parallelism

• Task-level (e.g. Embarrassingly parallel)

• Divide and conquer

• Pipeline

• Iterations (loops)

• Client-server

• Geometric (usually domain dependent)

• Hybrid (different program phases)

Task Level

A
B D E

Independent Tasks

C

A
B

C

E

D

Task Level

 Break application into tasks, decided
offline (a priori).

 Generally this scheme does not have
strong scalability.

Example 1

Example 2

Assume we have a large array and we want to compute its minimum (T1), average (T2),
and maximum (T3).

Divide-And-Conquer

problem

subproblem subproblem

Compute
subproblem

Compute
subproblem

Compute
subproblem

Compute
subproblem

subproblem subproblem

solution

merge merge

merge

split split

split

Divide-And-Conquer
Sequentially, it looks like this:

Divide-And-Conquer
Parallel Version:

Pipeline
A series of ordered but independent computation stages need to be applied on data.

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

Time

Pipeline
• Useful for

– streaming workloads
– Loops that are hard to parallelize

• due inter-loop dependence

• How to do it?
1. Split each loop iteration into independent stages (e.g. S1,

S2, S3, …)
2. Assign each stage to a thread (e.g. T1 does S1, T2 does S2,

…).
3. When a thread is done with each stage, it can start the

same stage for the following loop iteration (e.g. T1 finishes
S1 of iteration 0, then start S1 of iteration 1, etc.).

• Advantages
– Expose intra-loop parallelism
– Locality increases for variables used across stages

• How shall we divide an iteration into stages?
– number of stages
– inter-loop vs intra-loop dependence

Example of pipeline parallelism

 while(!done) {
 Read block;
 Compress the block;
 Write block;
 }

Source of example:
http://www.futurechips.org/parallel-programming-2/parallel-programming-clarifying-pipeline-parallelism.html

Example of pipeline parallelism

Source of example:
http://www.futurechips.org/parallel-programming-2/parallel-programming-clarifying-pipeline-parallelism.html

Assume 8 iterations

Repository Model

repository

Compute A

Compute B

Compute E

Compute D

Compute C

Asynchronous
Function calls

Whenever a thread is done with its task it can take another one from a repository.

Conclusions

• Concurrency and parallelism are not
exactly the same thing.

• problem  algorithm  dependency
graph  parallel pattern 
implementation

• Knowing the hardware will help you
generate a better task dependency
graph  dependency graph in turn helps
you reason about parallelism in your
code

