
Parallel Computing

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu

http://www.mzahran.com

CSCI-UA.0480-003

Lecture 4: Parallel Software: Basics

The burden is on software

• From now on…
– In shared memory programs:

• Start a single process and fork threads.
• Threads carry out tasks.

– In distributed memory programs:
• Start multiple processes.
• Processes carry out tasks.

SPMD – single program multiple data

• A SPMD programs consists of a single
executable that can behave as if it were
multiple different programs through the
use of conditional branches.

if (I’m thread/process i)
do this;

else
do that;

Writing Parallel Programs

double x[n], y[n];
…
for (i = 0; i < n; i++)

x[i] += y[i];

1. Divide the work among the
processes/threads

(a) so each process/thread
gets roughly the same
amount of work

(b) and communication is
minimized.

2. Arrange for the processes/threads to synchronize.
3. Arrange for communication among processes/threads.

Shared Memory Systems

Shared Memory
• Dynamic threads

– Master thread waits for work, forks new
threads, and when threads are done, they
terminate

+ Efficient use of resources
- thread creation and termination is time

consuming
• Static threads

– Pool of threads created and are allocated work,
but do not terminate until cleanup.

+ Better performance
- potential waste of system resources

Nondeterminism
. . .
printf ("Thread %d > my_val = %d\n" ,

my_rank , my_x) ;
. . .

Thread 0 > my_val = 7
Thread 1 > my_val = 19

Thread 1 > my_val = 19
Thread 0 > my_val = 7

Nondeterminism
• Race condition
• Critical section
• Mutually exclusive
• Mutual exclusion lock (mutex,

semaphore, …)

Copyright © 2010, Elsevier Inc.
All rights Reserved

my_val = Compute_val (my_rank) ;
Lock(&add_my_val_lock) ;
x += my_val ;
Unlock(&add_my_val_lock) ;

Important!!

What is the relationship between cache
coherence and nondeterminism?
Isn’t cache coherence enough

to ensure determinism?

Busy-waiting

Copyright © 2010, Elsevier Inc.
All rights Reserved

ok_for_1= false;
my_val = Compute_val (my_rank) ;
if (my_rank == 1)

while (! ok_for_1) ; /* Busy−wait loop */
x += my_val ; /* Critical section */
if (my_rank == 0)

ok_for_1 = true ; /* Let thread 1 update x */

What is wrong with that?

Distributed Memory Systems

Distributed Memory:
message-passing

Copyright © 2010, Elsevier Inc.
All rights Reserved

char message [100] ;
. . .
my_rank = Get_rank();
i f (my_rank == 1) {

sprintf (message , "Greetings from process 1") ;
Send (message , MSG_CHAR , 100 , 0) ;

} else if (my_rank == 0) {
Receive (message , MSG_CHAR , 100 , 1) ;
printf ("Process 0 > Received: %s\n" , message) ;

}

Distributed
Memory

Shared
Memory

Source: “Many Core Processors … Opportunities and Challenges” by Tim Mattson

How do shared-memory and distributed-memory
compare in terms of programmer’s effort?

We want to write a parallel
program … Now what?

• We have a serial program.
• How to parallelize it?
• We know that we need to divide work,

ensure load balancing, manage
synchronization, and reduce
communication!  Nice! How to do that?

• Unfortunately: there is no mechanical
process.

• Ian Foster has some nice framework.

Foster’s methodology
(The PCAM Methodology)

1. Partitioning: divide the computation to
be performed and the data operated on
by the computation into small tasks.

The focus here should be on
identifying tasks that can be executed
in parallel.
This step brings out the parallelism in
the algorithm

Copyright © 2010, Elsevier Inc.
All rights Reserved

2. Communication: determine what
communication needs to be carried out
among the tasks identified in the
previous step.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Foster’s methodology
(The PCAM Methodology)

3. Agglomeration or aggregation: combine
tasks and communications identified in
the first step into larger tasks.

For example, if task A must be
executed before task B can be
executed, it may make sense to
aggregate them into a single composite
task.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Foster’s methodology
(The PCAM Methodology)

4. Mapping: assign the composite tasks
identified in the previous step to
processes/threads.

This should be done so that
communication is minimized, and each
process/thread gets roughly the same
amount of work.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Foster’s methodology
(The PCAM Methodology)

Example - histogram
• 1.3,2.9,0.4,0.3,1.3,4.4,1.7,0.4,3.2,0.3,4.9,

2.4,3.1,4.4,3.9,0.4,4.2,4.5,4.9,0.9

Copyright © 2010, Elsevier Inc.
All rights Reserved

Serial program - input
1. The number of measurements: data_count
2. An array of data_count floats: data
3. The minimum value for the bin containing

the smallest values: min_meas
4. The maximum value for the bin containing

the largest values: max_meas
5. The number of bins: bin_count

Copyright © 2010, Elsevier Inc.
All rights Reserved

• Data[0] = 1.3
• Data[1] = 2.9
• Data[2] = 0.4
• Data[3] = 0.3
• Data[4] = 1.3
• Data[5] = 4.4
• Data[6] = 1.7
• Data[7] = 0.4
• Data[8] = 3.2
• Data[9] = 0.3
• Data[10] = 4.9
• Data[11] = 2.4
• Data[12] = 3.1
• Data[13] = 4.4
• Data[14] = 3.9,
• Data[15] = 0.4
• Data[16] = 4.2
• Data[17] = 4.5
• Data[18] = 4.9
• Data[19] = 0.9

data_count = 20

• Data[0] = 1.3
• Data[1] = 2.9
• Data[2] = 0.4
• Data[3] = 0.3
• Data[4] = 1.3
• Data[5] = 4.4
• Data[6] = 1.7
• Data[7] = 0.4
• Data[8] = 3.2
• Data[9] = 0.3
• Data[10] = 4.9
• Data[11] = 2.4
• Data[12] = 3.1
• Data[13] = 4.4
• Data[14] = 3.9,
• Data[15] = 0.4
• Data[16] = 4.2
• Data[17] = 4.5
• Data[18] = 4.9
• Data[19] = 0.9

data_count = 20

min_meas = 0.3

max_meas = 4.9

bin_count = 5

Serial program - output

1. bin_maxes : an array of bin_count
floats  store the upper bound of
each bin

2. bin_counts : an array of bin_count ints
 stores the number of elements in
each bin

Copyright © 2010, Elsevier Inc.
All rights Reserved

• Data[0] = 1.3
• Data[1] = 2.9
• Data[2] = 0.4
• Data[3] = 0.3
• Data[4] = 1.3
• Data[5] = 4.4
• Data[6] = 1.7
• Data[7] = 0.4
• Data[8] = 3.2
• Data[9] = 0.3
• Data[10] = 4.9
• Data[11] = 2.4
• Data[12] = 3.1
• Data[13] = 4.4
• Data[14] = 3.9,
• Data[15] = 0.4
• Data[16] = 4.2
• Data[17] = 4.5
• Data[18] = 4.9
• Data[19] = 0.9

bin_maxes[0] = 0.9
bin_maxes[1] = 1.7
bin_maxes[2] = 2.9
bin_maxes[3] = 3.9
bin_maxes[4] = 4.9

bin_counts[0] = 6
bin_counts[1] = 3
bin_counts[2] = 2
bin_counts[3] = 3
bin_counts[4] = 6

Serial Program

int bin = 0;
for(i = 0; i < data_count; i++){

bin = find_bin(data[i], …);
bin_counts[bin]++;

}

First two stages of Foster’s
Methodology

Copyright © 2010, Elsevier Inc.
All rights Reserved

Find_bin returns the bin that data[i] belongs to.

Alternative definition of tasks
and communication

Copyright © 2010, Elsevier Inc.
All rights Reserved

Adding the local arrays

Copyright © 2010, Elsevier Inc.
All rights Reserved

Conclusions
• Parallel software

– We focus on software for homogeneous MIMD
systems, consisting of a single program that
obtains parallelism by branching.

– Later we will look at GPUs
• Parallel Program Design

– Partition
– Determine communication
– Aggregate (if needed)
– Map

