
Parallel Computing

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu

http://www.mzahran.com

CSCI-UA.0480-003

Lecture 3: Parallel Hardware: Advanced

Some slides are adopted from:
• G. Barlas book
• P. Pacheco book



Last lecture we looked at techniques 
to exploit ILP

(Instruction Level Parallelism)

• Pipelining
• Superscalar
• Out-of-order execution
• Speculative execution
• Simultaneous Multithreading (aka 

Hyperthreading technology)

All the above require very little, if at all, work from 
the side of the programmer to make use of.



Computer Technology … Historically
• Memory

– DRAM capacity: 2x / 2 years (since ‘96); 
64x size improvement in last decade. 

• Processor
– Speed 2x / 1.5 years (since ‘85);  BUT!!

100X performance in last decade.
• Disk

– Capacity: 2x / 1 year (since ‘97)
250X size in last decade.



µProc
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7%/yr.
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Most of the single core performance loss is on the memory system!



Flynn’s Taxonomy
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SISD

Single instruction stream
Single data stream

(SIMD)

Single instruction stream
Multiple data stream

MISD

Multiple instruction stream
Single data stream

(MIMD)

Multiple instruction stream
Multiple data stream





SIMD
• Parallelism achieved by dividing data among the 

processors.

• Applies the same instruction (or group of 
instructions) to multiple data items.

• Called data parallelism.

• Example:  
– GPUs
– vector processors
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SIMD example
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control unit

ALU1 ALU2 ALUn

…

for (i = 0; i < n; i++)
x[i] += y[i];

x[1] x[2] x[n]

n data items

n ALUs



SIMD
• What if we don’t have as many ALUs as 

data items? 
• Divide the work and process iteratively.
• Example 4 ALUs   and   15 data items.
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Round3 ALU1 ALU2 ALU3 ALU4

1 X[0] X[1] X[2] X[3]

2 X[4] X[5] X[6] X[7]

3 X[8] X[9] X[10] X[11]

4 X[12] X[13] X[14]



SIMD drawbacks

• All ALUs are required to execute the same 
instruction(s), or remain idle.

• In classic design, they must also operate 
synchronously.

• The ALUs have no instruction storage.
• Efficient for large data parallel problems, 

but not other types of more complex 
parallel problems.
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Vector processors
• Processors execute instructions where 

operands are vectors instead of 
individual data elements or scalars.

• This needs: 
– Vector registers

• Capable of storing a vector of operands and 
operating simultaneously on their contents.

– Vectorized functional units
• The same operation is applied to each element in 

the vector (or pairs of elements)
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Vector processors - Pros
• Fast
• Easy to use.
• Vectorizing compilers are good at 

identifying code to exploit.
• Compilers also can provide information 

about code that cannot be vectorized.
– Helps the programmer re-evaluate code.

• High memory bandwidth
• Uses every item in a cache line.

Copyright © 2010, Elsevier Inc. 
All rights Reserved



Vector processors - Cons

• They don’t handle irregular 
data structures.

• A very finite limit to their ability to 
handle ever larger problems. 
(scalability)
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MIMD
• Supports multiple simultaneous instruction 

streams operating on multiple data 
streams. 

• Typically consist of a collection of fully 
independent processing units or cores, 
each of which has its own control unit and 
its own ALU.

• Example: multicore processors, 
multiprocessor systems
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Flynn’s classification is based on how 
instructions and data are used.

How about we classify based on how 
memory is designed?



Shared Memory System

• A collection of autonomous processors 
is connected to a memory system via an 
interconnection network.

• Each processor can access each memory 
location. 

• The processors usually communicate 
implicitly by accessing shared data 
structures.
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Shared Memory System
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Suppose that one CPU wants to access addr1, and another CPU wants addr2,
will they both see the same memory access delay? 

Hint: Banks!



Distributed Memory System
• Clusters A collection (cluster) of nodes

– Connected by a interconnection network

• Nodes of a cluster are individual 
computation units.
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Distributed Memory System
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Let’s summarize that:

One node is 
more important 
than the others.

All nodes are 
the same.

(SMP = Symmetric Multi-Processing)



A Brief discussion of
Interconnection networks

• Affects performance of both 
distributed and shared memory 
systems.

• Two categories:
– Shared memory interconnects
– Distributed memory interconnects
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Shared memory interconnects
• Bus interconnect

– A collection of parallel communication wires 
together with some hardware that controls 
access to the bus.

– Communication wires are shared by the 
devices that are connected to it.

– As the number of devices connected to the 
bus increases, contention for use of the 
bus increases, and performance decreases.
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Shared memory interconnects

• Switched interconnect
– Uses switches to control the routing of 

data among the connected devices.
– Crossbar

• Allows simultaneous communication among 
different devices.

• Faster than buses. 
• But the cost of the switches and links is 

relatively high.
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(a) 
A crossbar switch connecting 4 processors 
(Pi) and 4 memory modules (Mj)

(b)
Configuration of internal switches in a 
crossbar 

(c) Simultaneous memory accesses 
by the processors



Distributed memory interconnects

• Two groups
– Direct interconnect 

• Each switch is directly connected to a processor 
memory pair, and the switches are connected to 
each other.

– Indirect interconnect
• Switches may not be directly connected to a 

processor.
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Direct Interconnect
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ring toroidal mesh



Indirect Interconnect
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Crossbar Interconnect 

switch

node



Some Definitions Related to
Interconnection Networks

• Any time data is transmitted, we’re 
interested in how long it will take for the 
data to reach its destination.

• Latency
– The time that elapses between the source’s 

beginning to transmit the data and the 
destination’s starting to receive the first byte.

• Bandwidth
– The rate at which the destination receives data 

after it has started to receive the first byte.
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Message transmission time = l + n / b

latency (seconds)

bandwidth (bytes per second)

length of message (bytes)



Cache coherence
• Programmers have no 

control over caches 
and when they get 
updated.
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Cache coherence
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x = 2;  /* shared variable */

y0  privately owned by Core 0
y1 and z1 privately owned by Core 1

y0 eventually ends up = 2
y1 eventually ends up = 6
z1 = ???



Snooping Cache Coherence

• The cores share a bus .
• Any signal transmitted on the bus can be 

“seen” by all cores connected to the bus.
• When core 0 updates the copy of x stored 

in its cache it also broadcasts this 
information across the bus.

• If core 1 is “snooping” the bus, it will see 
that x has been updated and it can mark 
its copy of x as invalid.
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Directory Based Cache Coherence

• Uses a data structure called a directory 
that stores the status of each cache 
line.

• When a variable is updated, the 
directory is consulted, and the cache 
controllers of the cores that have that 
variable’s cache line in their caches are 
invalidated.
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Cache Coherence Protocols

Snoopy protocols

Write updateDirectory-Based  protocols

Write invalidate



Example: MESI Protocol



Examples from Real Life



IBM Power 7
• Supports global shared memory space for POWER7 

clusters
– So you can program a cluster as if it were a single 

system
• Design for power-efficiency
• ~1.2B Transistors
• Up to 8 cores and 4-way SMT
• TurboCore mode that can turn off half of the 

cores from an eight-core processor, but those 4 
cores have access to all the memory controllers and 
L3 cache at increased clock speeds.

• 3.0 – 4.25 GHz clock speed



IBM Power 7: 
Cache Hierarchy

• 32KB DL1 and IL1 per core
• 256KB L2 per core
• eDRAM L3 4MB per core (total of 

32MB)
– Very flexible design for L3



Source: Slides from Joel M. Tendler from IBM



Intel Kaby Lake

source: wikichip



Intel Kaby Lake
• 14 nm process technology
• Hyperthreading technology: 2 threads/core
• Is the optimization phase of the newer Intel’s "process-architecture-

optimization" model
• L1I Cache: 32 KB 8-way set associative - 64 B line size - Write-back policy 

- shared by the two threads, per core
• L1D Cache: 32 KB 8-way set associative - 64 B line size - shared by the 

two threads, per core - 64 Bytes/cycle load bandwidth - 32 Bytes/cycle 
store bandwidth - Write-back policy

• L2 Cache: unified, 256 KB 4-way set associative - 64B/cycle bandwidth to 
L1$ - Write-back policy

• L3 Cache: Up to 2 MB Per core, shared across all cores - Up to 16-way set 
associative - Write-back policy

• L4 Cache (if any):  64 MB - Per package
• On-chip GPU included



TILERA: Many-core chips
 Released in August 2007. 
 TILE64 offered 64 cores arranged in a 2-D grid.
 TILE-Gx8072 has 72 cores with a 2-D grid of 

communication channels called the iMesh
Interconnect. 
 iMesh comes with five independent mesh networks that offer an 

aggregate bandwidth exceeding 110 Tbps. 

 Each core has 32KB data and 32KB instruction L1 
caches and 256KB L2 cache. A 18MB L3 coherent 
cache is shared between the cores. Access to the 
main RAM is done via four DDR3 controllers. 



TILE-Gx8072 Block Diagram



How About Supercomputers?
http://www.top500.org/



• Started December 1999
• Main goal: to build a petaflop/s scale supercomputer  

to attack science problems such as protein folding. 
(Now we want exascale!!)

• Strategy: Massive collection of low-power CPUs 
instead of a moderate-sized collection of high-power 
CPUs.

• BlueGene is a family of supercomputers.
– BlueGene/L is the first generation
– BlueGene/P is the petaflop generation 
– BlueGene/Q is the third generation 

IBM BlueGene/L



IBM BlueGene/L

• 65,536 dual-processor compute nodes
– 700MHz IBM PowerPC 440 processors
– 512 MB memory per compute node, 16 TB in entire system.
– 800 TB of disk space

• 2,500 square feet



Conclusions

• The trend now is:
– More cores per chip
– Non-bus interconnect
– NUMA and NUCA (Non-Uniform 

Memory/Cache Access)
• Communication and memory access are 

the two most expensive operations, 
NOT computations


