
Parallel Computing

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu

http://www.mzahran.com

CSCI-UA.0480-003

Lecture 3: Parallel Hardware: Advanced

Some slides are adopted from:
• G. Barlas book
• P. Pacheco book

Last lecture we looked at techniques
to exploit ILP

(Instruction Level Parallelism)

• Pipelining
• Superscalar
• Out-of-order execution
• Speculative execution
• Simultaneous Multithreading (aka

Hyperthreading technology)

All the above require very little, if at all, work from
the side of the programmer to make use of.

Computer Technology … Historically
• Memory

– DRAM capacity: 2x / 2 years (since ‘96);
64x size improvement in last decade.

• Processor
– Speed 2x / 1.5 years (since ‘85);  BUT!!

100X performance in last decade.
• Disk

– Capacity: 2x / 1 year (since ‘97)
250X size in last decade.

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000
19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU
19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

“Moore’s Law”

Memory Wall

Most of the single core performance loss is on the memory system!

Flynn’s Taxonomy

Copyright © 2010, Elsevier Inc.
All rights Reserved

SISD

Single instruction stream
Single data stream

(SIMD)

Single instruction stream
Multiple data stream

MISD

Multiple instruction stream
Single data stream

(MIMD)

Multiple instruction stream
Multiple data stream

SIMD
• Parallelism achieved by dividing data among the

processors.

• Applies the same instruction (or group of
instructions) to multiple data items.

• Called data parallelism.

• Example:
– GPUs
– vector processors

Copyright © 2010, Elsevier Inc.
All rights Reserved

SIMD example

Copyright © 2010, Elsevier Inc.
All rights Reserved

control unit

ALU1 ALU2 ALUn

…

for (i = 0; i < n; i++)
x[i] += y[i];

x[1] x[2] x[n]

n data items

n ALUs

SIMD
• What if we don’t have as many ALUs as

data items?
• Divide the work and process iteratively.
• Example 4 ALUs and 15 data items.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Round3 ALU1 ALU2 ALU3 ALU4

1 X[0] X[1] X[2] X[3]

2 X[4] X[5] X[6] X[7]

3 X[8] X[9] X[10] X[11]

4 X[12] X[13] X[14]

SIMD drawbacks

• All ALUs are required to execute the same
instruction(s), or remain idle.

• In classic design, they must also operate
synchronously.

• The ALUs have no instruction storage.
• Efficient for large data parallel problems,

but not other types of more complex
parallel problems.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Vector processors
• Processors execute instructions where

operands are vectors instead of
individual data elements or scalars.

• This needs:
– Vector registers

• Capable of storing a vector of operands and
operating simultaneously on their contents.

– Vectorized functional units
• The same operation is applied to each element in

the vector (or pairs of elements)

Copyright © 2010, Elsevier Inc.
All rights Reserved

Vector processors - Pros
• Fast
• Easy to use.
• Vectorizing compilers are good at

identifying code to exploit.
• Compilers also can provide information

about code that cannot be vectorized.
– Helps the programmer re-evaluate code.

• High memory bandwidth
• Uses every item in a cache line.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Vector processors - Cons

• They don’t handle irregular
data structures.

• A very finite limit to their ability to
handle ever larger problems.
(scalability)

Copyright © 2010, Elsevier Inc.
All rights Reserved

MIMD
• Supports multiple simultaneous instruction

streams operating on multiple data
streams.

• Typically consist of a collection of fully
independent processing units or cores,
each of which has its own control unit and
its own ALU.

• Example: multicore processors,
multiprocessor systems

Copyright © 2010, Elsevier Inc.
All rights Reserved

Flynn’s classification is based on how
instructions and data are used.

How about we classify based on how
memory is designed?

Shared Memory System

• A collection of autonomous processors
is connected to a memory system via an
interconnection network.

• Each processor can access each memory
location.

• The processors usually communicate
implicitly by accessing shared data
structures.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Shared Memory System

Copyright © 2010, Elsevier Inc.
All rights Reserved

Suppose that one CPU wants to access addr1, and another CPU wants addr2,
will they both see the same memory access delay?

Hint: Banks!

Distributed Memory System
• Clusters A collection (cluster) of nodes

– Connected by a interconnection network

• Nodes of a cluster are individual
computation units.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Distributed Memory System

Copyright © 2010, Elsevier Inc.
All rights Reserved

Let’s summarize that:

One node is
more important
than the others.

All nodes are
the same.

(SMP = Symmetric Multi-Processing)

A Brief discussion of
Interconnection networks

• Affects performance of both
distributed and shared memory
systems.

• Two categories:
– Shared memory interconnects
– Distributed memory interconnects

Copyright © 2010, Elsevier Inc.
All rights Reserved

Shared memory interconnects
• Bus interconnect

– A collection of parallel communication wires
together with some hardware that controls
access to the bus.

– Communication wires are shared by the
devices that are connected to it.

– As the number of devices connected to the
bus increases, contention for use of the
bus increases, and performance decreases.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Shared memory interconnects

• Switched interconnect
– Uses switches to control the routing of

data among the connected devices.
– Crossbar

• Allows simultaneous communication among
different devices.

• Faster than buses.
• But the cost of the switches and links is

relatively high.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Copyright © 2010, Elsevier Inc.
All rights Reserved

(a)
A crossbar switch connecting 4 processors
(Pi) and 4 memory modules (Mj)

(b)
Configuration of internal switches in a
crossbar

(c) Simultaneous memory accesses
by the processors

Distributed memory interconnects

• Two groups
– Direct interconnect

• Each switch is directly connected to a processor
memory pair, and the switches are connected to
each other.

– Indirect interconnect
• Switches may not be directly connected to a

processor.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Direct Interconnect

Copyright © 2010, Elsevier Inc.
All rights Reserved

ring toroidal mesh

Indirect Interconnect

Copyright © 2010, Elsevier Inc.
All rights Reserved

Crossbar Interconnect

switch

node

Some Definitions Related to
Interconnection Networks

• Any time data is transmitted, we’re
interested in how long it will take for the
data to reach its destination.

• Latency
– The time that elapses between the source’s

beginning to transmit the data and the
destination’s starting to receive the first byte.

• Bandwidth
– The rate at which the destination receives data

after it has started to receive the first byte.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Copyright © 2010, Elsevier Inc.
All rights Reserved

Message transmission time = l + n / b

latency (seconds)

bandwidth (bytes per second)

length of message (bytes)

Cache coherence
• Programmers have no

control over caches
and when they get
updated.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Cache coherence

Copyright © 2010, Elsevier
Inc. All rights Reserved

x = 2; /* shared variable */

y0 privately owned by Core 0
y1 and z1 privately owned by Core 1

y0 eventually ends up = 2
y1 eventually ends up = 6
z1 = ???

Snooping Cache Coherence

• The cores share a bus .
• Any signal transmitted on the bus can be

“seen” by all cores connected to the bus.
• When core 0 updates the copy of x stored

in its cache it also broadcasts this
information across the bus.

• If core 1 is “snooping” the bus, it will see
that x has been updated and it can mark
its copy of x as invalid.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Directory Based Cache Coherence

• Uses a data structure called a directory
that stores the status of each cache
line.

• When a variable is updated, the
directory is consulted, and the cache
controllers of the cores that have that
variable’s cache line in their caches are
invalidated.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Cache Coherence Protocols

Snoopy protocols

Write updateDirectory-Based protocols

Write invalidate

Example: MESI Protocol

Examples from Real Life

IBM Power 7
• Supports global shared memory space for POWER7

clusters
– So you can program a cluster as if it were a single

system
• Design for power-efficiency
• ~1.2B Transistors
• Up to 8 cores and 4-way SMT
• TurboCore mode that can turn off half of the

cores from an eight-core processor, but those 4
cores have access to all the memory controllers and
L3 cache at increased clock speeds.

• 3.0 – 4.25 GHz clock speed

IBM Power 7:
Cache Hierarchy

• 32KB DL1 and IL1 per core
• 256KB L2 per core
• eDRAM L3 4MB per core (total of

32MB)
– Very flexible design for L3

Source: Slides from Joel M. Tendler from IBM

Intel Kaby Lake

source: wikichip

Intel Kaby Lake
• 14 nm process technology
• Hyperthreading technology: 2 threads/core
• Is the optimization phase of the newer Intel’s "process-architecture-

optimization" model
• L1I Cache: 32 KB 8-way set associative - 64 B line size - Write-back policy

- shared by the two threads, per core
• L1D Cache: 32 KB 8-way set associative - 64 B line size - shared by the

two threads, per core - 64 Bytes/cycle load bandwidth - 32 Bytes/cycle
store bandwidth - Write-back policy

• L2 Cache: unified, 256 KB 4-way set associative - 64B/cycle bandwidth to
L1$ - Write-back policy

• L3 Cache: Up to 2 MB Per core, shared across all cores - Up to 16-way set
associative - Write-back policy

• L4 Cache (if any): 64 MB - Per package
• On-chip GPU included

TILERA: Many-core chips
 Released in August 2007.
 TILE64 offered 64 cores arranged in a 2-D grid.
 TILE-Gx8072 has 72 cores with a 2-D grid of

communication channels called the iMesh
Interconnect.
 iMesh comes with five independent mesh networks that offer an

aggregate bandwidth exceeding 110 Tbps.

 Each core has 32KB data and 32KB instruction L1
caches and 256KB L2 cache. A 18MB L3 coherent
cache is shared between the cores. Access to the
main RAM is done via four DDR3 controllers.

TILE-Gx8072 Block Diagram

How About Supercomputers?
http://www.top500.org/

• Started December 1999
• Main goal: to build a petaflop/s scale supercomputer

to attack science problems such as protein folding.
(Now we want exascale!!)

• Strategy: Massive collection of low-power CPUs
instead of a moderate-sized collection of high-power
CPUs.

• BlueGene is a family of supercomputers.
– BlueGene/L is the first generation
– BlueGene/P is the petaflop generation
– BlueGene/Q is the third generation

IBM BlueGene/L

IBM BlueGene/L

• 65,536 dual-processor compute nodes
– 700MHz IBM PowerPC 440 processors
– 512 MB memory per compute node, 16 TB in entire system.
– 800 TB of disk space

• 2,500 square feet

Conclusions

• The trend now is:
– More cores per chip
– Non-bus interconnect
– NUMA and NUCA (Non-Uniform

Memory/Cache Access)
• Communication and memory access are

the two most expensive operations,
NOT computations

