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Lecture 20: CUDA III



Quick Exercises

If a CUDA device’s SM can take up to 
1,536 threads and up to 4 blocks, which 
of the following block configs would 
result in the most number of threads in 
the SM?
– 128 threads/blk
– 256 threads/blk
– 512 threads/blk
– 1,024 threads/blk



Quick Exercises

• For a vector addition, assume that the 
vector length is 2,000, each thread 
calculates one output element, and the 
thread block size 512 threads. How 
many threads will be in the grid?

• Given the above, how many warps do you 
expect to have divergence due to the 
boundary check on the vector length?



Quick Exercises

A CUDA programmer says that if they 
launch a kernel with only 32 threads in 
each block, they can leave out the 
__syncthreads() instruction wherever 
barrier synchronization is needed. Do 
you think this is a good idea? Explain.



A Motivational Example

• G80 supports 86.4 GB/s of global 
memory access

• Single precision floating point = 4 bytes

• Then we cannot load more than 86.4/4 = 
21.6 giga single precision data per 
second

• Theoretical peak performance of G80 is 
367gigaflops!

How come??



Computation vs Memory Access

• Compute to global memory access 
(CGMA) ratio

Definition 

The number of FP calculations
performed for each access to the global
memory within a region in a CUDA
program.



Computation vs Memory Access

2 memory accesses
1 FP multiplication
1 FP addition
so  CGMA = 1



Main Goals for This Lecture

• How to make 
the best use of 
the GPU 
memory 
system?

• How to deal 
with hardware 
limitation?

Measure of 
success: higher  
CGMA



Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory



Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Registers
• Fastest.
• Do not consume 

off-chip bandwidth.
• Only accessible by a 

thread.
• Lifetime of a thread



Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Shared Memory
• Extremely fast
• Highly parallel
• Restricted to a block
• Example:  Fermi’s
shared/L1 is 1+TB/s
aggregate 



Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Global Memory 
•Typically implemented 

in DRAM
• High access latency: 

400-800 cycles
• Finite access bandwidth
• Potential of traffic 

congestion
• Throughput up to 
177GB/s
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making progress.
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Important!

• Each access to registers involves fewer 
instructions than global memory.

• Aggregate register files bandwidth = ~two 
orders of magnitude that of the global 
memory!

• Energy consumed for accessing a value 
from the register file =~ at least an order 
of magnitude lower than accessing global 
memory!

• Shared memory is part of the address 
space  accessing it requires load/store 
instructions.



Scope: the range of threads that can access a variable
Lifetime: the portion of the program’s execution 

when the variable is available for use.

__device__ is optional when used with  __shared__, or  
__constant__

Automatic variables reside in a register



local memory

Does not physically exist. It is an abstraction to the local scope of a thread.
Actually put in global memory by the compiler.

Automatic array variables local to a thread reside in local memory.



The variable must be declared within the kernel function body; and will
be available only within the kernel code.



The variable must be declared outside of any function.

•Declaration of constant variables must be outside any function body.
• Currently total size of constant variables in an application is limited
to 64KB.



By declaring a CUDA variable in one of the
CUDA memory types, a CUDA programmer
dictates the visibility and access speed of the
variable.



Reducing Global Memory Traffic

• Global memory access is performance 
bottleneck.

• The lower CGMA the lower the 
performance

• Reducing global memory access enhances 
performance.

• A common strategy is tiling: partition the 
data into subsets called tiles, such that 
each tile fits into the shared memory.



Back to Matrix Multiplication
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Back to Matrix Multiplication
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Back to Matrix Multiplication

• The basic idea is to make threads that 
use common elements collaborate.

• Each thread can load different 
elements into the shared memory 
before calculations.

• These elements will be used by the 
thread that loaded them and other 
threads that share them.



Back to Matrix Multiplication
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Back to Matrix Multiplication

• Potential reduction in global memory 
traffic in matrix multiplication example is 
proportional to the dimension of the blocks 
used.
– With NxN blocks the potential reduction would 

be N

• If an input matrix is of dimension M and 
the tile size is TILE_WIDTH, the dot 
product will be performed in 
M/TILE_WIDTH phases.



Back to Matrix Multiplication

The Phases



Back to Matrix Multiplication

to be sure needed elements
are loaded

to be sure calculations are
completed



Exercise

How can we use shared memory to 
reduce global memory bandwidth for 
matrix addition?



Do you Remember the G80 
example?

• 86.4 GB/s global memory bandwidth

• In matrix multiplication if we use 16x16 
tiles -> reduction in memory traffic by a 
factor of 16

• Global memory can now support 
[(86.4/4) x 16] = 345.6 gigaflops -> very 
close to the peak (367gigaglops).



Memory As Limiting Factor to 
Parallelism

• Limited shared memory limits the 
number of threads that can execute 
simultaneously in SM for a given 
application
– The more memory locations each thread 

requires, the fewer the number of threads 
per SM

– Same applies to registers



Memory As Limiting Factor to 
Parallelism

• Example: Registers
– G80 has 8K registers per SM -> 128K registers for 

entire processor.
– G80 can accommodate up to 768 threads per SM
– To fill this capacity each thread can use only 

8K/768 = 10 registers.
– If each thread uses 11 registers -> threads per SM 

are reduced -> per block granularity
– e.g. if block contains 256 threads the number of 

threads will be reduced by 256 -> lowering the 
number of threads/SM from 768 to 512  (i.e. 1/3 
reduction of threads!)



Memory As Limiting Factor to 
Parallelism

• Example: Shared memory
– G80 has 16KB of shared memory per SM

– SM accommodates up to 8 blocks

– To reach this maximum each block must not 
exceed 16KB/8 = 2KB of memory.

– e.g. if each block uses 5KB -> no more than 
3 blocks can be assigned to each SM



Error Handling



Error Handling

• In a CUDA program, if we suspect an 
error has occurred during a kernel 
launch, then we must explicitly check
for it after the kernel has executed. 

• CUDA runtime will respond to questions 
… But won’t talk without asked!



cudaError_t cudaGetLastError(void);

• Called by the host

• returns a value encoding the kind of the 
last error it has encountered

• check for the error only after we're 
sure a kernel has finished executing 
don’t forget kernel calls are async!
– What will you do?



#include <stdio.h>
#include <stdlib.h>

__global__ void foo(int *ptr)
{
*ptr = 7;

}

int main(void)
{
foo<<<1,1>>>(0);

// make the host block until the device is finished with foo
cudaThreadSynchronize();

// check for error
cudaError_t error = cudaGetLastError();
if(error != cudaSuccess)
{
// print the CUDA error message and exit
printf("CUDA error: %s\n", cudaGetErrorString(error));
exit(-1);

}

return 0;
}

$ nvcc crash.cu -o crash
$ ./crash
CUDA error: unspecified launch failure



Same Technique with Synchronous Calls

cudaError_t error = cudaMalloc((void**)&ptr,  

100000000000);
if(error != cudaSuccess)
{
// print the CUDA error message and exit
printf("CUDA error: %s\n", 

cudaGetErrorString(error));
exit(-1);

}

The output will be: 
CUDA error: out of memory



A note about compilation … 
And some useful tools!



NVCC device specific switches
 -arch : controls the "virtual'' architecture that will be 

used for the generation of the PTX code.

 -code : specifies the actual device that will be targeted 
by the cubin binary.

Source: Multicore and GPU Programming: An Integrated Approach by G. Barlas



sm_xy

• x is the GPU generation number

• y is the version within that generation

• Binary compatibility of GPU applications is 
not guaranteed across different 
generations. 
– Example:  a CUDA application that has been 

compiled for a Fermi GPU will very likely not 
run on a Kepler GPU (and vice versa). 

• This is why nvcc relies on a two stage 
compilation model for ensuring application 
compatibility with future GPU generations.



Source: CUDA compiler driver nvcc manual (NVIDIA website)

-arch

-code



JIT Compilation

• If you are unsure which exact GPU the code will 
run on.

• Use -arch without -code 
• Main disadvantage: slower startup



Fatbinaries

nvcc x.cu -arch=compute_30 -code=compute_30,sm_30,sm_35

Generate binaries for 
two versions of Kepler

generate PTX
and keep it in the 
binary generated,
for JIT on future GPUs

At runtime, the CUDA driver will select the most appropriate translation 
when the device function is launched.

Till now we have single virtual architecture and several real architectures.
How about several virtual architectures?



--generate-code

nvcc x.cu \

--generate-code arch=compute_20,code=sm_20 \

--generate-code arch=compute_20,code=sm_21 \

--generate-code arch=compute_30,code=sm_30



The Default

nvcc x.cu -arch=compute_20  -code=sm_20,compute_20

nvcc x.cu

is equivalent to



nvcc

• Some nvcc features: --ptxas-options=-v
– Print the smem, register and other 

resource usages

• Generates CUDA binary file: nvcc –cubin
– cubin file is the cuda executable



nvprof

• CUDA profiler: profiling data from the 
command line

• To profile a region of the application:
1. #include <cuda_profiler_api.h>
2. in the host function surround the region with: 

• cudaProfilerStart()
• cudaProfilerStop()

3. nvcc myprog.cu
4. nvprof --profile-from-start-off ./a.out



nvprof summary mode (default)



nvprof trace mode

GPU-trace mode provides a timeline of all activities taking place on 
the GPU in chronological order.



Print individual kernel invocations
and sort them in chronological order.

Print CUDA runtime/driver
API trace



nvprof --devices x --events y ./a.out

• x: device number in case of multi-GPU

• y: event name
– Gives very useful information, such as:

• number of global memory loads, stores, …

• number of global memory coalesced 

• branch divergences 



Conclusions

• Using memory effectively will likely 
require the redesign of the algorithm.

• The ability to reason about hardware 
limitations when developing an 
application is a key concept of 
computational thinking. 


