
Parallel Computing

Mohamed Zahran (aka Z)

mzahran@cs.nyu.edu

http://www.mzahran.com

CSCI-UA.0480-003

Lecture 20: CUDA III

Quick Exercises

If a CUDA device’s SM can take up to
1,536 threads and up to 4 blocks, which
of the following block configs would
result in the most number of threads in
the SM?
– 128 threads/blk
– 256 threads/blk
– 512 threads/blk
– 1,024 threads/blk

Quick Exercises

• For a vector addition, assume that the
vector length is 2,000, each thread
calculates one output element, and the
thread block size 512 threads. How
many threads will be in the grid?

• Given the above, how many warps do you
expect to have divergence due to the
boundary check on the vector length?

Quick Exercises

A CUDA programmer says that if they
launch a kernel with only 32 threads in
each block, they can leave out the
__syncthreads() instruction wherever
barrier synchronization is needed. Do
you think this is a good idea? Explain.

A Motivational Example

• G80 supports 86.4 GB/s of global
memory access

• Single precision floating point = 4 bytes

• Then we cannot load more than 86.4/4 =
21.6 giga single precision data per
second

• Theoretical peak performance of G80 is
367gigaflops!

How come??

Computation vs Memory Access

• Compute to global memory access
(CGMA) ratio

Definition

The number of FP calculations
performed for each access to the global
memory within a region in a CUDA
program.

Computation vs Memory Access

2 memory accesses
1 FP multiplication
1 FP addition
so CGMA = 1

Main Goals for This Lecture

• How to make
the best use of
the GPU
memory
system?

• How to deal
with hardware
limitation?

Measure of
success: higher
CGMA

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Registers
• Fastest.
• Do not consume

off-chip bandwidth.
• Only accessible by a

thread.
• Lifetime of a thread

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Shared Memory
• Extremely fast
• Highly parallel
• Restricted to a block
• Example: Fermi’s
shared/L1 is 1+TB/s
aggregate

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Global Memory
•Typically implemented

in DRAM
• High access latency:

400-800 cycles
• Finite access bandwidth
• Potential of traffic

congestion
• Throughput up to
177GB/s

Traffic congestion prevents
all but a few threads from
making progress.

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Constant Memory
• Read only
• Short latency and

high bandwidth
when all threads
access the same
Location

• Small in size ~64KB

Important!

• Each access to registers involves fewer
instructions than global memory.

• Aggregate register files bandwidth = ~two
orders of magnitude that of the global
memory!

• Energy consumed for accessing a value
from the register file =~ at least an order
of magnitude lower than accessing global
memory!

• Shared memory is part of the address
space  accessing it requires load/store
instructions.

Scope: the range of threads that can access a variable
Lifetime: the portion of the program’s execution

when the variable is available for use.

__device__ is optional when used with __shared__, or
__constant__

Automatic variables reside in a register

local memory

Does not physically exist. It is an abstraction to the local scope of a thread.
Actually put in global memory by the compiler.

Automatic array variables local to a thread reside in local memory.

The variable must be declared within the kernel function body; and will
be available only within the kernel code.

The variable must be declared outside of any function.

•Declaration of constant variables must be outside any function body.
• Currently total size of constant variables in an application is limited
to 64KB.

By declaring a CUDA variable in one of the
CUDA memory types, a CUDA programmer
dictates the visibility and access speed of the
variable.

Reducing Global Memory Traffic

• Global memory access is performance
bottleneck.

• The lower CGMA the lower the
performance

• Reducing global memory access enhances
performance.

• A common strategy is tiling: partition the
data into subsets called tiles, such that
each tile fits into the shared memory.

Back to Matrix Multiplication

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

Back to Matrix Multiplication

P0,0

thread0,0

P1,0

thread1,0

P0,1

thread0,1

P1,1

thread1,1

M0,0 * N0,0 M0,0 * N1,0 M0,1 * N0,0 M0,1 * N1,0

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1

M2,0 * N0,2 M2,0 * N1,2 M2,1 * N0,2 M2,1 * N1,2

M3,0 * N0,3 M3,0 * N1,3 M3,1 * N0,3 M3,1 * N1,3

Access
order

Back to Matrix Multiplication

• The basic idea is to make threads that
use common elements collaborate.

• Each thread can load different
elements into the shared memory
before calculations.

• These elements will be used by the
thread that loaded them and other
threads that share them.

Back to Matrix Multiplication
Step 4 Step 5 Step 6

T0,0 Md0,0

↓

Mds0,0

Nd0,0

↓

Nds0,0

PValue0,0 +=

Mds0,0*Nds0,0 +

Mds1,0*Nds0,1

Md2,0

↓

Mds0,0

Nd0,2

↓

Nds0,0

PValue0,0 +=

Mds0,0*Nds0,0 +

Mds1,0*Nds0,1

T1,0 Md1,0

↓

Mds1,0

Nd1,0

↓

Nds1,0

PValue1,0 +=

Mds0,0*Nds1,0 +

Mds1,0*Nds1,1

Md3,0

↓

Mds1,0

Nd1,2

↓

Nds1,0

PValue1,0 +=

Mds0,0*Nds1,0 +

Mds1,0*Nds1,1

T0,1 Md0,1

↓

Mds0,1

Nd0,1

↓

Nds0,1

PdValue0,1 +=

Mds0,1*Nds0,0 +

Mds1,1*Nds0,1

Md2,1

↓

Mds0,1

Nd0,3

↓

Nds0,1

PdValue0,1 +=

Mds0,1*Nds0,0 +

Mds1,1*Nds0,1

T1,1 Md1,1

↓

Mds1,1

Nd1,1

↓

Nds1,1

PdValue1,1 +=

Mds0,1*Nds1,0 +

Mds1,1*Nds1,1

Md3,1

↓

Mds1,1

Nd1,3

↓

Nds1,1

PdValue1,1 +=

Mds0,1*Nds1,0 +

Mds1,1*Nds1,1

Phase 1 Phase 2

Time

Back to Matrix Multiplication

• Potential reduction in global memory
traffic in matrix multiplication example is
proportional to the dimension of the blocks
used.
– With NxN blocks the potential reduction would

be N

• If an input matrix is of dimension M and
the tile size is TILE_WIDTH, the dot
product will be performed in
M/TILE_WIDTH phases.

Back to Matrix Multiplication

The Phases

Back to Matrix Multiplication

to be sure needed elements
are loaded

to be sure calculations are
completed

Exercise

How can we use shared memory to
reduce global memory bandwidth for
matrix addition?

Do you Remember the G80
example?

• 86.4 GB/s global memory bandwidth

• In matrix multiplication if we use 16x16
tiles -> reduction in memory traffic by a
factor of 16

• Global memory can now support
[(86.4/4) x 16] = 345.6 gigaflops -> very
close to the peak (367gigaglops).

Memory As Limiting Factor to
Parallelism

• Limited shared memory limits the
number of threads that can execute
simultaneously in SM for a given
application
– The more memory locations each thread

requires, the fewer the number of threads
per SM

– Same applies to registers

Memory As Limiting Factor to
Parallelism

• Example: Registers
– G80 has 8K registers per SM -> 128K registers for

entire processor.
– G80 can accommodate up to 768 threads per SM
– To fill this capacity each thread can use only

8K/768 = 10 registers.
– If each thread uses 11 registers -> threads per SM

are reduced -> per block granularity
– e.g. if block contains 256 threads the number of

threads will be reduced by 256 -> lowering the
number of threads/SM from 768 to 512 (i.e. 1/3
reduction of threads!)

Memory As Limiting Factor to
Parallelism

• Example: Shared memory
– G80 has 16KB of shared memory per SM

– SM accommodates up to 8 blocks

– To reach this maximum each block must not
exceed 16KB/8 = 2KB of memory.

– e.g. if each block uses 5KB -> no more than
3 blocks can be assigned to each SM

Error Handling

Error Handling

• In a CUDA program, if we suspect an
error has occurred during a kernel
launch, then we must explicitly check
for it after the kernel has executed.

• CUDA runtime will respond to questions
… But won’t talk without asked!

cudaError_t cudaGetLastError(void);

• Called by the host

• returns a value encoding the kind of the
last error it has encountered

• check for the error only after we're
sure a kernel has finished executing 
don’t forget kernel calls are async!
– What will you do?

#include <stdio.h>
#include <stdlib.h>

__global__ void foo(int *ptr)
{
*ptr = 7;

}

int main(void)
{
foo<<<1,1>>>(0);

// make the host block until the device is finished with foo
cudaThreadSynchronize();

// check for error
cudaError_t error = cudaGetLastError();
if(error != cudaSuccess)
{
// print the CUDA error message and exit
printf("CUDA error: %s\n", cudaGetErrorString(error));
exit(-1);

}

return 0;
}

$ nvcc crash.cu -o crash
$./crash
CUDA error: unspecified launch failure

Same Technique with Synchronous Calls

cudaError_t error = cudaMalloc((void**)&ptr,

100000000000);
if(error != cudaSuccess)
{
// print the CUDA error message and exit
printf("CUDA error: %s\n",

cudaGetErrorString(error));
exit(-1);

}

The output will be:
CUDA error: out of memory

A note about compilation …
And some useful tools!

NVCC device specific switches
 -arch : controls the "virtual'' architecture that will be

used for the generation of the PTX code.

 -code : specifies the actual device that will be targeted
by the cubin binary.

Source: Multicore and GPU Programming: An Integrated Approach by G. Barlas

sm_xy

• x is the GPU generation number

• y is the version within that generation

• Binary compatibility of GPU applications is
not guaranteed across different
generations.
– Example: a CUDA application that has been

compiled for a Fermi GPU will very likely not
run on a Kepler GPU (and vice versa).

• This is why nvcc relies on a two stage
compilation model for ensuring application
compatibility with future GPU generations.

Source: CUDA compiler driver nvcc manual (NVIDIA website)

-arch

-code

JIT Compilation

• If you are unsure which exact GPU the code will
run on.

• Use -arch without -code
• Main disadvantage: slower startup

Fatbinaries

nvcc x.cu -arch=compute_30 -code=compute_30,sm_30,sm_35

Generate binaries for
two versions of Kepler

generate PTX
and keep it in the
binary generated,
for JIT on future GPUs

At runtime, the CUDA driver will select the most appropriate translation
when the device function is launched.

Till now we have single virtual architecture and several real architectures.
How about several virtual architectures?

--generate-code

nvcc x.cu \

--generate-code arch=compute_20,code=sm_20 \

--generate-code arch=compute_20,code=sm_21 \

--generate-code arch=compute_30,code=sm_30

The Default

nvcc x.cu -arch=compute_20 -code=sm_20,compute_20

nvcc x.cu

is equivalent to

nvcc

• Some nvcc features: --ptxas-options=-v
– Print the smem, register and other

resource usages

• Generates CUDA binary file: nvcc –cubin
– cubin file is the cuda executable

nvprof

• CUDA profiler: profiling data from the
command line

• To profile a region of the application:
1. #include <cuda_profiler_api.h>
2. in the host function surround the region with:

• cudaProfilerStart()
• cudaProfilerStop()

3. nvcc myprog.cu
4. nvprof --profile-from-start-off ./a.out

nvprof summary mode (default)

nvprof trace mode

GPU-trace mode provides a timeline of all activities taking place on
the GPU in chronological order.

Print individual kernel invocations
and sort them in chronological order.

Print CUDA runtime/driver
API trace

nvprof --devices x --events y ./a.out

• x: device number in case of multi-GPU

• y: event name
– Gives very useful information, such as:

• number of global memory loads, stores, …

• number of global memory coalesced

• branch divergences

Conclusions

• Using memory effectively will likely
require the redesign of the algorithm.

• The ability to reason about hardware
limitations when developing an
application is a key concept of
computational thinking.

