

CSCI-UA.0480-003 Parallel Computing

Lecture 2: Parallel Hardware: Basics

Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com

ENPAC

Eckert and Mauchly

- 1st working electronic computer (1946)
- To reprogram it you need to re-arrange the cords
- 18,000 Vacuum tubes
- 1,800 instructions/sec
- 3,000 ft³

Programming the ENIAC!

EDSAC 1 (1949)

http://www.cl.cam.ac.uk/UoCCL/misc/EDSAC99/

- Von Neumann presented his idea of stored program concept.
- Maurice Wilkes built it.

1st stored program computer 650 instructions/sec 1,400 ft³

• After the vacuum tubes, transistors were invented (1947) $\rightarrow 2^{nd}$ generations of computers

- UNIVAC (UNIversal Automatic Computer)
- Introduced in the 50s

- From transistors to integrated circuits(IC) \rightarrow 3rd generation of computers
- One IC can host hundreds (then thousands, then millions) of transistors
 → computers are getting smaller

Intel 4004 Die Photo

Introduced in 1970 – First microprocessor 2,250 transistors 12 mm² 108 KHz

Intel 8086 Die Scan

- 29,000 transistors
- 33 mm²
- 5 MHz
- Introduced in 1979
 - Basic architecture
 of the IA32 PC

Intel 80486 Die Scan

- 1,200,000 transistors
- 81 mm²
- 25 MHz
- Introduced in 1989
 - 1st pipelined
 implementation of
 IA32
 - 1st processor with on-chip cache

Pentium Die Photo

- 3,100,000
 transistors
- 296 mm²
- 60 MHz
- Introduced in 1993
 - 1st superscalar
 implementation of
 IA32

Pentium 4

55,000,000 transistors 146 mm² 3 GHz Introduced in 2000

http://www.chip-architect.com

Core 2 Duo (Merom)

Intel Core i9 (Kaby-lake)

 SMP/Accelerator Signaling
 Memory Signaling

 Gore
 Core
 Cor

IBM Power 9 (24 cores)

Intel Xeon Phi (72 cores)

How did the hardware evolve like that?

Let's look at different waves (generations of architectures)

First Generation (1970s)

Single Cycle Implementation

The Von Neumann Architecture

Main Memory

Copyright © 2010, Elsevier Inc. All rights Reserved

Second Generation (1980s)

•Pipelinining:

- •the hardware divided into stages
- temporal parallelism
- Number of stages increases with each generation
- •Maximum CPI (Cycles Per Instruction) = 1
 - Due to dependencies

(i.e. an instruction must wait

for the result of another instruction)

- Spatial parallelism
- •Executing several instructions at the same time is called superscalar capability.
- •performance = instructions per cycle (IPC)
- Speculative Execution (prediction of branch direction) is introduced to make the best use of superscalar capability → This can make some instructions execute out-of-order!!

Third Generation (1990s)

E

F

E

Fourth Generation (2000s)

Simultaneous Multithreading (SMT) (aka Hyperthreading Technology) Some definitions before we proceed

An operating system "process"

- An instance of a computer program that is being executed.
- Components of a process:
 - The executable machine language program
 - A block of memory
 - Descriptors of resources the OS has allocated to the process
 - Security information
 - Information about the state of the process

Multitasking

- Gives the illusion that a single processor system is running multiple programs simultaneously.
- Each process takes turns running →time slice
- After its time is up, it waits until it has a turn again.

Threading

- Threads are contained within processes.
- They allow programmers to divide their programs into (more or less) independent tasks.
- The hope is that when one thread blocks because it is waiting on a resource, another thread will have work to do and can run.

As you can see ...

We can have several processes, executed in a multitasking fashion, and each process can consist of several threads.

The Status-Quo

- We moved from single core to multicore to manycore:
 - for technological reasons, as we saw last lecture.
- Free lunch is over for software folks
 - The software will not become faster with every new generation of processors
- Not enough experience in parallel programming
 - Parallel programs of old days were restricted to some elite applications -> very few programmers
 - Now we need parallel programs for many different applications

How Did These Advances Happen?

The Multicore Software Triad

Conclusions

- The hardware evolution, driven by Moore's law, was geared toward two things:
 - Exploiting parallelism
 - Dealing with memory (latency, capacity)