
Parallel Computing

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu

http://www.mzahran.com

CSCI-UA.0480-003

Lecture 2: Parallel Hardware: Basics

Computer History
Eckert and Mauchly

• 1st working electronic
computer (1946)

• To reprogram it you
need to re-arrange the
cords

• 18,000 Vacuum tubes
• 1,800 instructions/sec
• 3,000 ft3

Computer History

Programming the ENIAC!

Computer History
• Von Neumann

presented his idea of
stored program
concept.

• Maurice Wilkes built it.

1st stored program
computer
650 instructions/sec
1,400 ft3http://www.cl.cam.ac.uk/UoCCL/misc/EDSAC99/

EDSAC 1 (1949)

Computer History

• After the vacuum tubes, transistors
were invented (1947)  2nd generations
of computers

• UNIVAC (UNIversal Automatic Computer)
• Introduced in the 50s

Computer History

• From transistors to integrated
circuits(IC)  3rd generation of
computers

• One IC can host hundreds (then
thousands, then millions) of transistors
 computers are getting smaller

Intel 4004 Die Photo

• Introduced in 1970
– First

microprocessor
• 2,250 transistors
• 12 mm2

• 108 KHz

Intel 8086 Die Scan

• 29,000 transistors
• 33 mm2

• 5 MHz
• Introduced in 1979

– Basic architecture
of the IA32 PC

Intel 80486 Die Scan
• 1,200,000

transistors
• 81 mm2

• 25 MHz
• Introduced in 1989

– 1st pipelined
implementation of
IA32

– 1st processor with
on-chip cache

Pentium Die Photo

• 3,100,000
transistors

• 296 mm2

• 60 MHz
• Introduced in 1993

– 1st superscalar
implementation of
IA32

Pentium 4

• 55,000,000
transistors

• 146 mm2

• 3 GHz
• Introduced in 2000

http://www.chip-architect.com

Pentium 4

IBM Power 9 (24 cores)

Core 2 Duo (Merom)

Intel Xeon Phi (72 cores)

Intel Core i9 (Kaby-lake)

How did the hardware evolve like
that?

Let’s look at different waves (generations of architectures)

First Generation (1970s)

Single Cycle Implementation

Copyright © 2010, Elsevier Inc. All rights
Reserved

The Von Neumann Architecture

Second Generation (1980s)

DF CI E

•Pipelinining:
•the hardware divided into stages
•temporal parallelism
•Number of stages increases with each generation

•Maximum CPI (Cycles Per Instruction) = 1
•Due to dependencies
(i.e. an instruction must wait
for the result of another instruction)

Fetch ExecuteIssueDecode Commit

Some Enhancements

Cache Memory Virtual Memory

TLBMulti-level caches

Third Generation (1990s)

DF CI

E

E

E

•ILP (Instruction Level Parallelism)
•Spatial parallelism
•Executing several instructions at the same
time is called superscalar capability.
•performance = instructions per cycle (IPC)
•Speculative Execution (prediction of branch direction) is
introduced to make the best use of superscalar capability 
This can make some instructions execute out-of-order!!

Fourth Generation (2000s)

DF CI

E

E

E
DF CI

E

E

E

Simultaneous Multithreading (SMT)
(aka Hyperthreading Technology)

Some definitions before we proceed

An operating system “process”
• An instance of a computer program that

is being executed.
• Components of a process:

– The executable machine language program
– A block of memory
– Descriptors of resources the OS has

allocated to the process
– Security information
– Information about the state of the process

Copyright © 2010, Elsevier Inc.
All rights Reserved

Multitasking

• Gives the illusion that a single processor
system is running multiple programs
simultaneously.

• Each process takes turns running time
slice

• After its time is up, it waits until it has
a turn again.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Threading

• Threads are contained within processes.
• They allow programmers to divide their

programs into (more or less) independent
tasks.

• The hope is that when one thread blocks
because it is waiting on a resource,
another thread will have work to do and
can run.

Copyright © 2010, Elsevier Inc.
All rights Reserved

As you can see …

We can have several processes, executed
in a multitasking fashion, and each

process can consist of several threads.

The Status-Quo
• We moved from single core to multicore to

manycore:
– for technological reasons, as we saw last lecture.

• Free lunch is over for software folks
– The software will not become faster with every

new generation of processors
• Not enough experience in parallel programming

– Parallel programs of old days were restricted to
some elite applications -> very few programmers

– Now we need parallel programs for many different
applications

How Did These Advances Happen?

Computer
Architecture

Software
Community

Process
Technology

Wishes

• Performance
• Restrictions

• Restrictions
• Capabilities

Design

Conclusions

• The hardware evolution, driven by
Moore’s law, was geared toward two
things:
– Exploiting parallelism
– Dealing with memory (latency, capacity)

