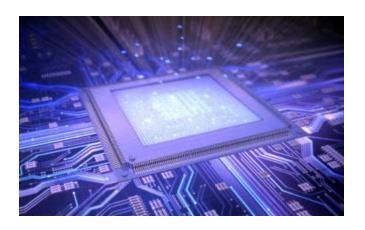


CSCI-UA.0480-003 Parallel Computing

Lecture 19: CUDA II

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com



Software <-> Hardware

- From a programmer's perspective:
 - Blocks
 - Kernel
 - Threads
 - Grid
- Hardware Implementation:
 - -SMs
 - -SPs (per SM)
 - Warps

Some Restrictions First

- All threads in a grid execute the same kernel function
- A grid is organized as a 2D (or 3D if compute capability beyond 2.0) array of blocks (gridDim.x, gridDim.y, and gridDim.z)
- Each block is organized as 3D array of threads (blockDim.x, blockDim.y, and blockDim.z)
- Once a kernel is launched, its dimensions cannot change.
- All blocks in a grid have the same dimension
- The total size of a block has an upper bound
- Once assigned to an SM, the block must execute in its entirety by the SM

Compute Capability

- A standard way to expose hardware resources to applications.
- CUDA compute capability starts with 1.0 and latest one is 7.x (as of today)
- API: cudaGetDeviceProperties()

cudaError_t cudaGetDeviceProperties(

```
struct cudaDeviceProp {
         char name[256];
         size t totalGlobalMem; /* in bytes */
         size_t sharedMemPerBlock; /* in bytes */
         int regsPerBlock;
         int warpSize;
         int maxThreadsPerBlock;
         int maxThreadsDim[3];
         int maxGridSize[3];
         int clockRate; /* in KHz */
         size t totalConstMem;
         int major; int minor;
         int multiProcessorCount;
         int concurrentKernels;
         int unifiedAddressing;
         int memoryClockRate;
         int memoryBusWidth;
         int I2CacheSize;
         int maxThreadsPerMultiProcessor:
         ... and a lot of other stuff}
```

struct cudaDeviceProp * prop,
int device)

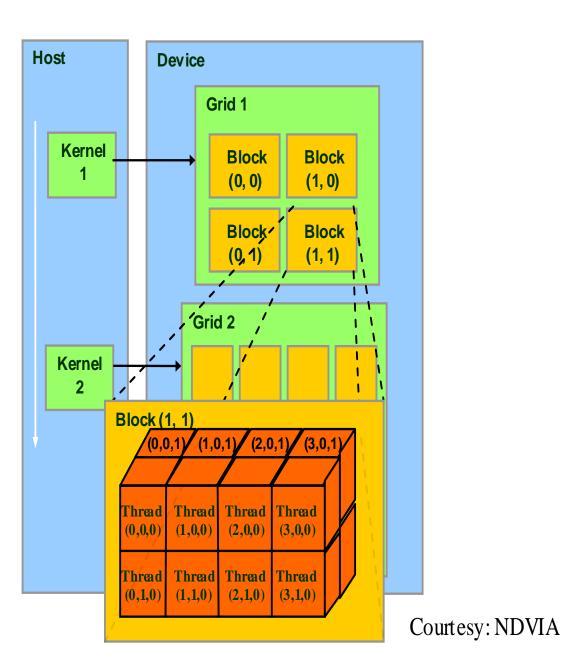
cudaError_t

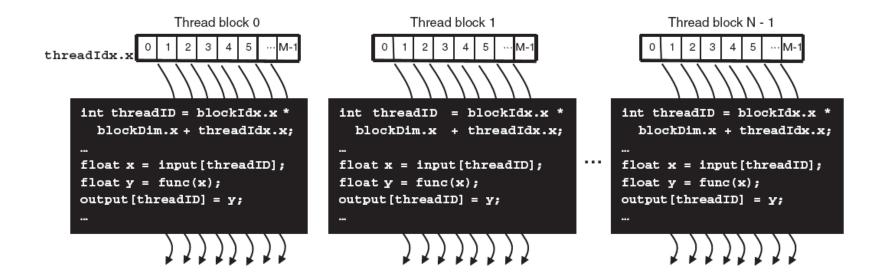
cudaGetDeviceCount(
int * count)

Compute Capability Example

Table 1 A	Comparison of	Maxwell GM107	to Kepler GK107
Table I. A	CUITIDALISUIT UI	maxwell Gm10/	to repter drive

GPU	GK107 (Kepler)	GM107 (Maxwell)	
CUDA Cores	384	640	
Base Clock	1058 MHz	1020 MHz	
GPU Boost Clock	N/A	1085 MHz	
GFLOP/s	812.5	1305.6	
Compute Capability	3.0	5.0	
Shared Memory / SM	16KB / 48 KB	64 KB	
Register File Size / SM	256 KB	256 KB	
Active Blocks / SM	16	32	
Memory Clock	5000 MHz	5400 MHz	
Memory Bandwidth	80 GB/s	86.4 GB/s	
L2 Cache Size	256 KB	2048 KB	
TDP	64W	60W	
Transistors	1.3 Billion	1.87 Billion	
Die Size	118 mm ²	148 mm ²	
Manufactoring Process	28 nm	28 nm	





- Thread ID is unique within a block
- Using block ID and thread ID we can make unique ID for each thread per kernel

Revisiting Matrix Multiplication

```
// Matrix multiplication kernel - thread specification
 _global___ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
  // 2D Thread ID
  int tx = threadIdx.x:
  int ty = threadIdx.y:
  // Pvalue stores the Pd element that is computed by the thread
  float Pvalue = 0:
  for (int k = 0: k < Width: ++k)
                                                             This is what we did
                                                                  before...
     float Mdelement = Md[ty * Width + k];
     float Ndelement = Nd[k * Width + tx]:
                                                              What is the main
     Pvalue += Mdelement * Ndelement:
                                                               shortcoming??
  // Write the matrix to device memory each thread writes one element
  Pd[ty * Width + tx] = Pvalue;
```

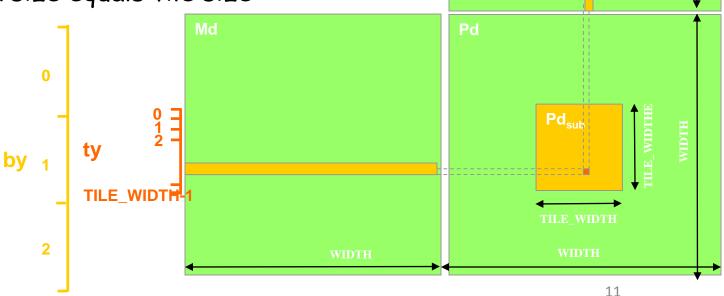
Revisiting Matrix Multiplication

```
// Matrix multiplication kernel - thread specification
 _global___ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
  // 2D Thread ID
  int tx = threadIdx.x:
  int ty = threadIdx.y:
  // Pvalue stores the Pd element that is computed by the thread
  float Pvalue = 0:
  for (int k = 0: k < Width: ++k)
                                                             Can only handle 16
     float Mdelement = Md[ty * Width + k];
                                                              elements in each
     float Ndelement = Nd[k * Width + tx]:
                                                                dimension!
     Pvalue += Mdelement * Ndelement:
  // Write the matrix to device memory each thread writes one element
  Pd[ty * Width + tx] = Pvalue;
                                                       Reason:
                                                       We used 1 block,
                                                       and a block is limited to 512 threads
```

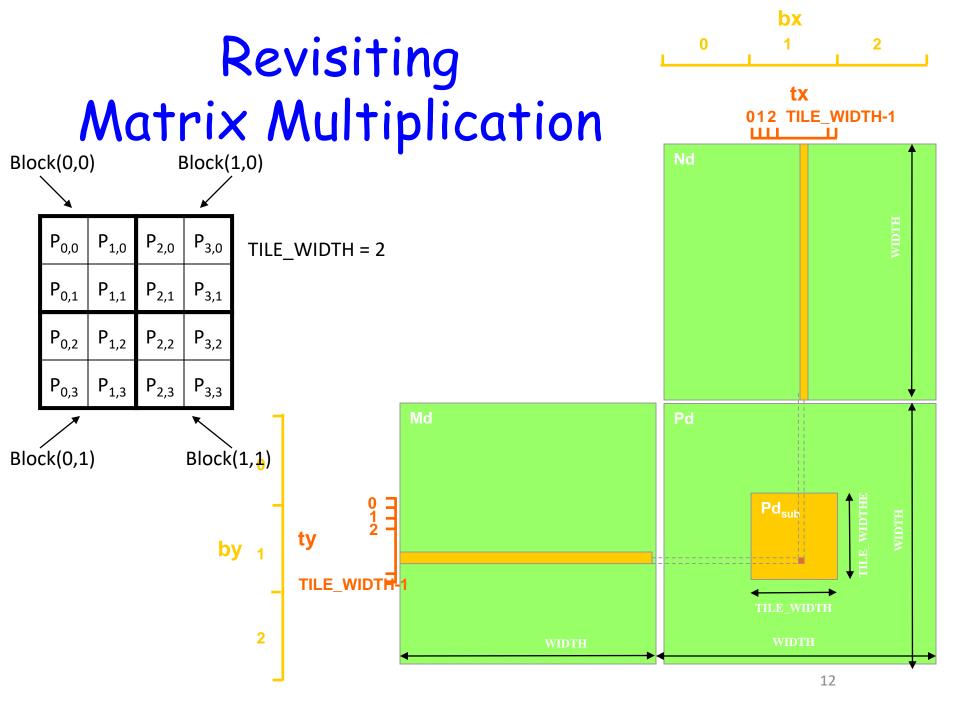
(1024 in newer GPUs)

Revisiting Matrix Multiplication

- Break-up Pd into tiles
- Each block calculates one tile
 - Each thread calculates one element
 - Block size equals tile size



TILE WIDTH-1



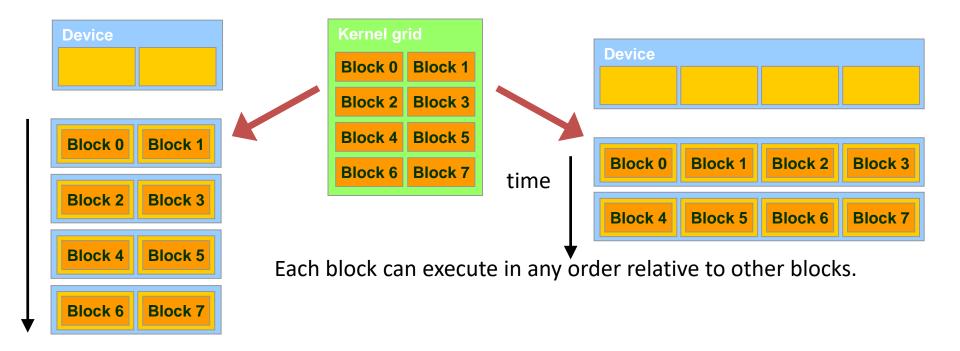
Revisiting Matrix Multiplication

```
// Setup the execution configuration
  dim3 dimGrid(Width/TILE_WIDTH, Width/TILE_WIDTH);
  dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
 // Calculate the row index of the Pd element and M
 int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
 // Calculate the column idenx of Pd and N
 int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;
float Pvalue = 0:
 // each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k)
  Pvalue += Md[Row*Width+k] * Nd[k*Width+Col]:
Pd\Gamma Row * Width + Coll = Pvalue:
```

Synchronization

__syncthreads()

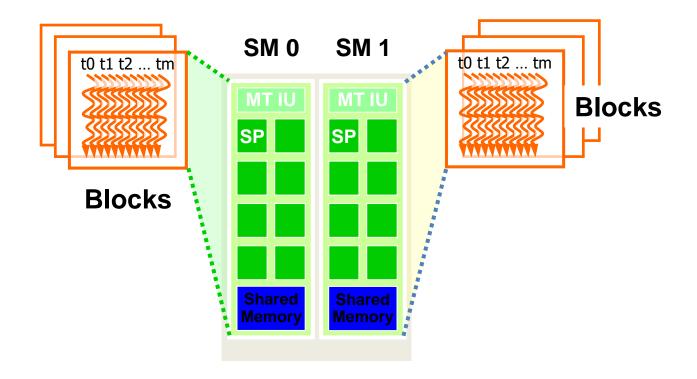
- called by a kernel function
- The thread that makes the call will be held at the calling location until every thread in the block reaches the location
- · Beware of if-then-else
- Threads in different blocks cannot synchronize -> CUDA runtime system can execute blocks in any order



The ability to execute the same application code on hardware with different number of execution resources is called **transparent scalability**

Thread Assignment

- Threads assigned to execution resources on a block-by-block basis.
- CUDA runtime automatically reduces number of blocks assigned to each SM until resource usage is under limit.
- Runtime system:
 - maintains a list of blocks that need to execute
 - assigns new blocks to SM as they compute previously assigned blocks
- Example of SM resources
 - computational units
 - number of threads that can be simultaneously tracked and scheduled.
 - Registers



GT200 can accommodate 8 blocks/SM and up to 1024 threads can be assigned to an SM.

What are our choices for number of blocks and number of threads/block?

Thread scheduling is an implementation concept.

Warps

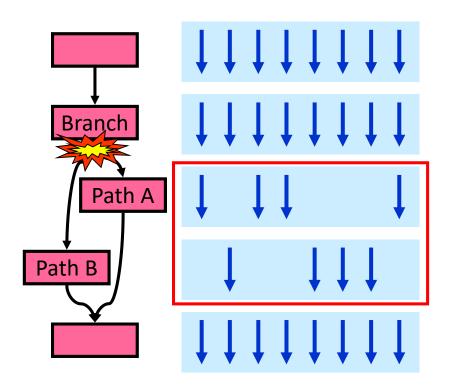
- Once a block is assigned to an SM, it is divided into units called warps.
 - Thread IDs within a warp are consecutive and increasing
 - Warp 0 starts with Thread ID 0
- · Warp size is implementation specific.
 - But so far all NVIDIA GPUs have warp = 32 threads.
- Warp is unit of thread scheduling in SMs

Warps

- Partitioning is always the same
- DO NOT rely on any ordering between warps
- Each warp is executed in a SIMD fashion (i.e. all threads within a warp must execute the same instruction at any given time).
 - Problem: branch divergence

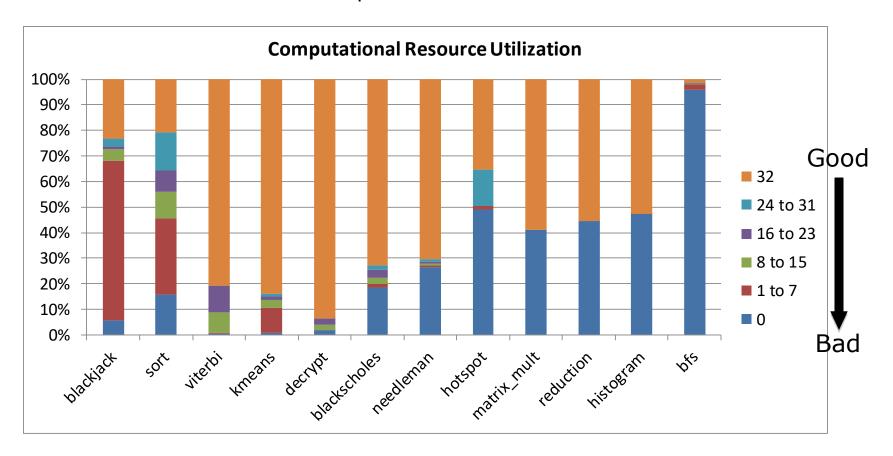
Branch Divergence in Warps

 occurs when threads inside warps branches to different execution paths.



50% performance loss

Example of underutilization



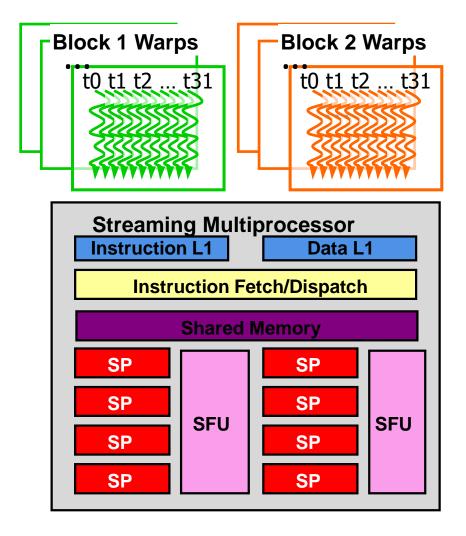
32 warps, 32 threads per warp, round-robin scheduling

Dealing With Branch Divergence

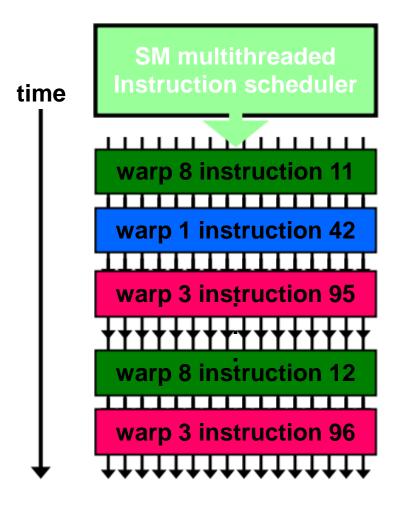
- A common case: avoid divergence when branch condition is a function of thread ID
 - Example with divergence:
 - If (threadIdx.x > 2) { }
 - This creates two different control paths for threads in a block
 - Example without divergence:
 - If (threadIdx.x / WARP SIZE > 2) { }
 - Also creates two different control paths for threads in a block
 - Branch granularity is a whole multiple of warp size; all threads in any given warp follow the same path
- There is a big body of research for dealing with branch divergence

Latency Tolerance

- When an instruction executed by the threads in a warp must wait for the result of a previously initiated long-latency operation, the warp is not selected for execution -> latency hiding
- Priority mechanism used to schedule ready warps
- Scheduling does not introduce idle time -> zerooverhead thread scheduling
- Scheduling is used for tolerating long-latency operations, such as:
 - pipelined floating-point arithmetic
 - branch instructions



This ability of tolerating long-latency operation is the main reason why GPUs do not dedicate as much chip area to cache memory and branch prediction mechanisms as traditional CPUs.



Exercise: Suppose 4 clock cycles are needed to dispatch the same instruction for all threads in a Warp in G80. If there is one global memory access every 4 instructions, how many warps are needed to fully tolerate 200-cycle memory latency?

Exercise

- The GT200 has the following specs (maximum numbers):
- 512 threads/block
- 1024 threads/SM
- 8 blocks/SM
- 32 threads/warp

What is the best configuration for thread blocks to implement matrix multiplications 8x8, 16x16, or 32x32?

Myths About CUDA

- GPUs have very wide (1000s) SIMD machines
 - No, a CUDA Warp is only 32 threads
- Branching is not possible on GPUs
 - Incorrect.
- · GPUs are power-inefficient
 - Nope, performance per watt is quite good
- CUDA is only for C or C++ programmers
 - Not true, there are third party wrappers for Java,
 Python, and more

Conclusion

- We must be aware of the restrictions imposed by hardware:
 - threads/SM
 - blocks/SM
 - threads/blocks
 - threads/warps
- The only safe way to synchronize threads in different blocks is to terminate the kernel and start a new kernel for the activities after the synchronization point