CSCI-UA.0480-003
Parallel Computing

Lecture 19: CUDAII

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com




Software <-> Hardware

* From a programmer's perspective:
— Blocks
— Kernel
— Threads
— Grid
* Hardware Implementation:
— SMs
— SPs (per SM)
— Warps



Some Restrictions First

All threads in a grid execute the same kernel
function

A grid is organized as a 2D (or 3D if compute
capability beyond 2.0) array of blocks (gridDim.x,
gridDim.y, and gridDim.z)

Each block is organized as 3D array of threads
(blockDim.x, blockDim.y, and blockDim.z)

Once a kernel is launched, its dimensions cannot
change.

All blocks in a grid have the same dimension
The total size of a block has an upper bound

Once assignhed to an SM, the block must execute in
its entirety by the SM



Compute Capability

A standard way to expose hardware
resources to applications.

* CUDA compute capability starts with 1.0
and latest one is 7.x (as of today)

* API: cudaGetDeviceProperties()



cudaError_t cudaGetDeviceProperties(

/

struct cudaDeviceProp {

char name[256];

size_t totalGlobalMem; /* in bytes */
size_t sharedMemPerBlock; /* in bytes */

int regsPerBlock;

int warpSize;

int maxThreadsPerBlock;
int maxThreadsDim[3];

int maxGridSize[3];

int clockRate; /* in KHz */
size_t totalConstMem;

int major; int minor;

int multiProcessorCount;
int concurrentKernels;

int unifiedAddressing;

int memoryClockRate;

int memoryBusWidth;

int 12CacheSize;

int maxThreadsPerMultiProcessor;
... and a lot of other stuff}

struct cudaDeviceProp * prop,
int device)

cudaError_t
cudaGetDeviceCount(
int * count)



Compute Capability Example

Table 1. A Comparison of Maxwell GM107 to Kepler GK107

GPU

CUDA Cores

Base Clock

GPU Boost Clock
GFLOP/s

Compute Capability
Shared Memory / SM
Register File Size / SM
Active Blocks / SM
Memory Clock
Memory Bandwidth
L2 Cache Size

TDP

Transistors

Die Size

Manufactoring Process

GK107 (Kepler)

384
1058 MHz
N/A
812.5
3.0
16KB / 48 KB
256 KB
16
5000 MHz
80 GB/s
256 KB
64W
1.3 Billion
118 mm?

28 nm

GM107 (Maxwell)

640
1020 MHz
1085 MHz

1305.6

5.0

64 KB
256 KB
32
5400 MHz
86.4 GB/s
2048 KB
60W
1.87 Billion
148 mm?

28 nm



Courtesy: NDVIA



Thread block 0 Thread block 1 Thread block N - 1

ol 1] 2]ala]s] Im1 012345---|M—1I ol 1|2 3] als| - |u1

threadIdx.x

int threadID = blockIdx.x *
blockDim.x + threadIdx.x;

int threadID = blockIdx.x *
blockDim.x + threadIdx.x;

int threadID = blockIdx.x *
blockDim.x + threadIdx.x;

float x = input|[threadID]:;
float ¥ = funcix);
output [threadID] = ¥:

float x input [threadID];

float ¥ func(x);
output [threadID] = ¥;

float x = input[threadlD];
float ¥y = funcix);
output [threadID] = ¥;

* Thread ID is unique within a block
* Using block ID and thread ID we can make unique ID for

each thread per kernel



Revisiting Matrix Multiplication

J/Matrixmultiplication kernel - thread specification

__glohal__ void MatrixMulKernel (float* Md, float* Nd, float® Pd, int Width}
|

f7 7D Thread 1D
int tx = threadldx.x:
int ty = threadldx.y:

/f Pvalue stores the Pd element that is coemputed by the thread
float Pvalue =10

for {(int k=0: k <Width: ++k)

| This is what we did
float Mdelement = Md[ty * Width + k]; before...
float Ndelement = Nd[k * Width + tu]: What is the main

Pyvalue += Mdelement * Ndelement;

shortcoming??

[/ Write the matrix to device memory each thread writes one element
Pd[ty * Width + tx] =Pvalue;



Revisiting Matrix Multiplication

J/Matrixmultiplication kernel - thread specification
__glohal__ void MatrixMulKernel (float* Md, float* Nd, float® Pd, int Width}
{

{20 Thread 1D

int tx=threadldx.x:

int ty =threadldx.y:

/f Pvalue stores the Pd element that is coemputed by the thread
float Pvalue =10

for {(int k=0: k <Width: ++k)
I Can only handle 16
elements in each

float Mdelement = Md[ty * Width + k]
float Ndelement = Nd[k * Width + tu]: . . |
Pyvalue += Mdelement * Ndelement; dimension!

[/ Write the matrix to device memory each thread writes one element

Pd[ty * Width + tx] =Pvalue:
| [ty ! x vatue Reason:

We used 1 block,
and a block is limited to 512 threads
(1024 in newer GPUs)



Revisiting
Matrix Multiplication

* Break-up Pd into tiles

 Each block calculates
one tile

— Each thread calculates
one element

— Block size equals tile size




Revisiting
Matrix Multiplication

Block(0,0) Block(1,0)

N\ /

Poo | Pro ] Pao | Pso| TILE WIDTH =2

Block(0,1) Block(1,1)

A

A

\ 4



Revisiting Matrix Multiplication

{/ Setup the execution canfiguration
dim3 dimGrid(Width/TILE_WIOTH, Width/TILE_WIDTH);
dim3d dimBlock(TILE_WIDTH, TILE_WIDTH);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

__global_voidMatrixMulKernel(float* Md, float* Hd, float* Pd, int Width)

|
1

{/{ Calculate the row index of the Pd element and M
int Row=>blockIdx.y*TILE_WIODTH + threadldx.y;

{f Calculate the column idenx of Pd and N

int Col =blockldx.x*TILE _WIDTH + threadldx.x;

float Pvalue =0;
{/ each thread computes one element of the block sub-matrix
for (int k=0; k. <Width; ++k)

Pyvalue +=Md[Row*Width+k] * Nd[k*Width+Col ];

Pd[Row*Width+Col] = Pvalue:
f



Synchronization

__syncthreads()

» called by a kernel function

 The thread that makes the call will be
held at the calling location until every
thread in the block reaches the location

« Beware of if-then-else

» Threads in different blocks cannot
synchronize -> CUDA runtime system
can execute blocks in any order



time

DeV|ce Kernel grid

Each block can execute in any order relative to other blocks.

v-

The ability to execute the same application code on hardware
with different number of execution resources is called
transparent scalability



Thread Assignment

Threads assigned to execution resources on a
block-by-block basis.

CUDA runtime automatically reduces number of
blocks assighed to each SM until resource usage is
under limit.

Runtime system:

— maintains a list of blocks that need to execute

— assigns new blocks to SM as they compute previously
assighed blocks

Example of SM resources
— computational units

— humber of threads that can be simultaneously tracked
and scheduled.

— Registers




|
] SMO SM1 ' H

t0tlt2 ... tm | "*, 07| 0t t2 . tm
NNNNNNANNAN ., o OIS
20000 ) Blocks

|| | @mEE | |

Blocks

GT200 can accommodate 8 blocks/SM and up to 1024 threads can be
assigned to an SM.
What are our choices for number of blocks and number of threads/block?

Thread scheduling is an implementation concept.



Warps

* Once a block is assigned to an SM, it is
divided into units called warps.

— Thread IDs within a warp are consecutive
and increasing

— Warp 0 starts with Thread ID O

» Warp size is implementation specific.

— But so far all NVIDIA GPUs have warp = 32
threads.

« Warp is unit of thread scheduling in
SMs



Warps

* Partitioning is always the same

* DO NOT rely on any ordering between
warps

» Each warp is executed ina SIMD
fashion (i.e. all threads within a warp
must execute the same instruction at
any given time).

— Problem: branch divergence



Branch Divergence in Warps

e occurs when threads

inside warps branches
to different execution 1 1 1 1 1 1 1 1

paths ma |1
Tj T

mm) | | )

SRRRRRY

50% performance loss



Example of underutilization

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Computational Resource Utilization

Good
m32
B 24 to 31
H16to 23
m8to 15
mlto7
mO
" . Bad
S e} & @ & SO
° \\{& ((\e bQé N b\éo 0&6 ..\.5(\ 6\56' Qo
A XL AN U &
N Q @’b AN

32 warps, 32 threads per warp, round-robin scheduling



Dealing With Branch Divergence

« A common case: avoid divergence when branch
condition is a function of thread ID
— Example with divergence:
e Tf (threadIdx.x > 2) { }
This creates two different control paths for threads in a block
— Example without divergence:
* If (threadIdx.x / WARP SIZE > 2) { }
Also creates two different control paths for threads in a block

Branch granularity is a whole multiple of warp size; all threads
in any given warp follow the same path

« There is a big body of research for dealing with
branch divergence



Latency Tolerance

When an instruction executed by the threads in
a warp must wait for the result of a previously
initiated long-latency operation, the warp is not
selected for execution -> latency hiding

Priority mechanism used to schedule ready
warps

Scheduling does not introduce idle time -> zero-
overhead thread scheduling

Scheduling is used for tolerating long-latency
operations, such as:

— pipelined floating-point arithmetic

— branch instructions



-Block 1 Warps —Block 2 Warps
l |
t0t1 t2 ... t31 t0t1 t2 ... 131

SNONONNNNNNNN ANONNNNNNNNN

Streamini Multiprocessor

Instruction Fetch/Dispatch

This ability of tolerating long-latency operation is the main reason why GPUs
do not dedicate as much chip area to cache memory and branch prediction mechanisms
as traditional CPUs.



time

v

Exercise: Suppose 4 clock cycles are needed to dispatch the same instruction
for all threads in a Warp in G80. If there is one global memory access every 4
instructions, how many warps are needed to fully tolerate 200-cycle memory latency?



Exercise

The 6T200 has the following specs
(maximum numbers):

« 512 threads/block
« 1024 threads/SM
« 8 blocks/SM

» 32 threads/warp

What is the best configuration for thread
blocks to implement matrix multiplications

8x8, 16x16, or 32x32?



Myths About CUDA

GPUs have very wide (1000s) SIMD machines
— No, a CUDA Warp is only 32 threads

Branching is not possible on GPUs
— Incorrect.

GPUs are power-inefficient
— Nope, performance per watt is quite good

CUDA is only for C or C++ programmers

— Not true, there are third party wrappers for Java,
Python, and more



Conclusion

 We must be aware of the restrictions
imposed by hardware:
— threads/SM
— blocks/SM
— threads/blocks
— threads/warps

* The only safe way to synchronize threads
in different blocks is to terminate the
kernel and start a new kernel for the
activities after the synchronization point



