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Lecture 17: GPUs - Intro



Two Main Goals 
for Current Architectures

•Maintain execution speed of old
sequential programs

•Increase throughput of parallel
programs
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CPU is optimized for sequential 
code performance

DRAM

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU GPU



Almost 10x the bandwidth of multicore
(relaxed memory model)
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Source: NVIDIA  CUDA C Programming Guide

Memory Bandwidth



Where do GPU stand among other chips?



What are GPUs good for?



Regularity + Massive Parallelism



Is Any Application Suitable for GPU?

• Heck no!

• You will get the best performance from 
GPU if your application is:
– Computation intensive

– Many independent computations

– Many similar computations



Let’s Remember
Flynn Classification

• A taxonomy of computer architecture

• Proposed by Micheal Flynn in 1966

• It is based two things:
– Instructions

– Data 

Single instruction
Multiple 
instruction

Single data SISD MISD

Multiple data SIMD MIMD



PU = Processing Unit



Problems Faced by GPUs

• Need enough parallelism

• Under-utilization

• Bandwidth to CPU



Let’s Take A Closer Look:
The Hardware



•PCIe 3.0 speeds ~32 GB-transfers per second per lane 
•PCIe 4.0 is about the double of version 3.0 
•widest supported links = 16 lanes
•Recently:  NVLINK



With the new NVLink

Source: NVIDIA

Bandwidth of ~80GB/s  per link 



source:  http://static.ddmcdn.com/gif/graphics-card-5.jpg



Modern GPU Hardware

• GPUs have many parallel execution units 
and higher transistor counts, while CPUs 
have few execution units and higher 
clock speeds

• GPUs have much deeper pipelines.
• GPUs have significantly faster and more 

advanced memory interfaces as they 
need to shift around a lot more data 
than CPUs



Single-Chip GPU vs Supercomputers



PASCAL GP100 GPU

DGX-1

SATURN V 
(Top 500 list, Nov 2016)

x124

A Modern GPUs



A Glimpse at At A GPGPU:
GeForce 8800 (2007)
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367 GFLOPS, 768 MB DRAM, 

86.4 GB/S Mem BW, 
4GB/S BW to CPU



A Glimpse at A Modern GPU
Streaming Multiprocessor (SM)
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A Glimpse at A Modern GPU
Streaming 
Processor (SP) SPs within SM share control logic 

and instruction cache
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Scalar vs Threaded

Scalar program (i.e. sequential)

float A[4][8];

for(int i=0;i<4;i++){

for(int j=0;j<8;j++){
A[i][j]++; 

}
} 



Multithreaded: (4x1)blocks – (8x1) threads



Multithreaded: (2x2)blocks – (4x2) threads



Scheduling Thread Blocks on SM
Example:
Scheduling 4 thread blocks on 3 SMs.



Another NVIDIA GPU:
FERMI

32 cores/SM

~3B Transistors



Another NVIDIA GPU:
Kepler ~7.1B transistors

192 cores per SMX



Nvidia Chip GK110 Based on 
Kepler Architecture

• 7.1 billion transistors
• More then 1 TFlop of double precision 

throughput
– 3x performance per watt of Fermi

• New capabilities:
– Dynamic parallelism
– Hyper-Q (several cores using the same 

GPU)
– Nvidia GPUDirect



Another NVIDIA GPU:
Maxwell ~8B transistors

128 cores per SMM
(Nvidia claims a 128
CUDA core SMM 

has 90% of the 
performance of 
a 192 CUDA core SMX.)



Main Goals of Newer GPUs

• Increasing floating-point throughput 

• Allowing software developers to focus 
on algorithm design rather than the 
details of how to map the algorithm to 
the hardware

• Power efficiency



Quick Glimpse At Programming 
Models

Application Kernels

Grid

BlocksThreads



Quick Glimpse At Programming 
Models

• Application can include multiple kernels
• Threads of the same block run on the same SM

– So threads in SM can operate and share memory
– Block in an SM is divided into warps of 32 threads 

each
– A warp is the fundamental unit of dispatch in an 

SM

• Blocks in a grid can coordinate using global 
shared memory

• Each grid executes a kernel



Scheduling In NVIDIA GPUs

• At any point of time the entire device is 
dedicated to a single application
– Switch from an application to another takes 

~25 microseconds

• Modern GPUs can simultaneously execute 
multiple kernels of the same application

• Two warps from different blocks (or even 
different kernels) can be issued and 
executed simultaneously 

• More advanced GPUs can do more than 
that but we will concentrate on the above 
only here.



Scheduling In NVIDIA GPUs

• Two-level, distributed thread scheduler
– At the chip level: a global work distribution 

engine schedules thread blocks to various 
SMs

– At the SM level, each warp scheduler 
distributes warps of 32 threads to its 
execution units.



An SM in Fermi

• 32 cores
• SFU = Special Function Unit
• 64KB of SRAM split between

cache and local mem

Each core can perform
one single-precision 

fused multiply-add (FMA) 
operation in each
clock period and 
one double-precision 
FMA in two clock periods



The Memory Hierarchy

• All addresses in the GPU are allocated 
from a continuous 40-bit (one terabyte) 
address space. 

• Global, shared, and local addresses are 
defined as ranges within this address 
space and can be accessed by common 
load/store instructions.

• The load/store instructions support 64-bit 
addresses to allow for future growth.



The Memory Hierarchy
• Local memory in each SM

• The ability to use some of this local memory 
as a first-level (L1) cache for global memory 
references.

• Beside L1, each SM has also shared memory.

• Because the access latency to this memory is 
also completely predictable, algorithms can be 
written to interleave loads, calculations, and 
stores with maximum efficiency.

• Modern GPUs are also equipped with an L2 
cache, shared among all SMs.





GPUs Today

• Are more and more general purpose and 
not only for graphics

• Discrete 
– separate chip on-board like all Nvidia GPUs 

and AMD GPUs

• Integrated
– With the CPU on the same chip like the 

GPU in Intel Sandy Bridge and Ivy Bridge



Memory Bus

• Memory bus
– Path between GPU itself and the video card 

memory
– Bus width and speed of memory  bandwidth 

(GB/s)  more is better
– Example:

• GTX 680:  6GHz memory and 256-bit interface 
192.2 GB/s

• GTX Titan: 6GHz memory and 384-bit interface 
288.4 GB/s

– Since most modern GPUs use 6GHz memory, 
the bus width is the one that makes the 
difference.



Conclusions

• The main keywords: 
– data parallelism
– kernel, grid, block, and thread
– warp

• Some applications are better run on CPU 
while others on GPU

• Main limitations
– The parallelizable portion of the code
– The communication overhead between CPU and 

GPU
– Memory bandwidth saturation


