CSCI-UA.0480-003
Parallel Computing

Lecture 17: GPUs - Intro

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com

Two Main Goals
for Current Architectures

*Maintain execution speed of old
sequential programs

Increase throughput of parallel
programs

Two Main Goals
for Current Architectures

*Maintain execution speed of old
sequential programs
TPy

Increase throughput of parallel
programs —

- GPU

Performance

Theoretical GFLOP/s at base clock

11000 7

10500 —+—NVIDIA GPU Single Precision

10000 - —+—NVIDIA GPU Double Precision

9500 + =t=|ntel CPU Single Precision

2000 +—Intel CPU Double Precision
8500 -+
8000
7500 -+
7000 -
6500 -~
6000 -+
5500 -+
5000 -+
4500 -+
4000 +
3500 -+
3000 -+
2500 -+
2000 -+
1500 +
1000 +

500 +

2003 2005 2007 2009 2011 2013 2015

Source: NVIDIA CUDA C Programming Guide

Control

CPU is optimized for sequential
code performance

m [[[[T [TTITT[[T]

G

P

|] Bf Bf Bf Bf 8] B

m [[[[T [TTITT[[T]

GP

|] Bf Bf Bf Bf 8] B

Almost 10x the bandwidth of multicore
(relaxed memory model)

Memory Bandwidth

Theoretical Peak GB/s
800

=4#=GeForce GPU

700
=+=Tesla GPU

=4=|ntel CPU

600
500
400
300

200

100 /

L

2003 2005 2007 2009 2011 2013 2015

Source: NVIDIA CUDA C Programming Guide

Where do GPU stand among other chips?

4+ General-Purpose Processors
.
e
® SIMD Units
£
=
0
=
a0
2
o

A5ICs

Efficiency

What are GPUs good for?

Regularity + Massive Parallelism

) u.‘-,!

S e
o A KT

¢)

Is Any Application Suitable for GPU?

Heck no!

You will get the best performance from
GPU if your application is:

— Computation intensive

— Many independent computations

— Many similar computations

Let's Remember
Flynn Classification

* A taxonomy of computer architecture
* Proposed by Micheal Flynn in 1966

It is based two things:
— Instructions

— Data
Single instruction !VlultlpIr::
instruction
Single data SISD MISD
Multiple data SIMD MIMD

S15D

Instruction Pool

Data Pool

MISD

PU|-

PU = Processing Unit

Instruction Pool |

Data Pool
I

Instruction Pool

PU

Data Pool

PU

PU

PU

MIMD Instruction Pool
—(pul— [P
2|—[pul |pu
-
&|—lpul4 Llpu
—|pul< L+|pu

Problems Faced by GPUs

* Need enough parallelism

* Under-utilization
 Bandwidth to CPU

Let's Take A Closer Look:
The Hardware

FCle CONMECTION

HIGH BANDWIDTH
GRAPHICS MEMORY

MEDLIM
BANMDWIDTH LARGE
SYSTEM MEMORY

PCle SWITCH

HIGH BANDWIDTH
GRAPHICS MEMORY

HIGH BANDWIDTH
GRAPHICS MEMORY

MEDIUM
BANDWIDTH LARGE
SYSTEM MEMORY

*PCle 3.0 speeds ~32 GB-transfers per second per lane

*PCle 4.0 is about the double of version 3.0
*widest supported links = 16 lanes
*Recently: NVLINK

With the new NVLink

Bandwidth of ~80GB/s per link

PCle SWITCH

PCle CONNECTION

| WVInk _}

HIGH BANDWIDTH HIGH BANDWIDTH HIGH BANDWIDTH
GRAPHICS MEMORY MEDILM L8] G [(8] MEDIUM
BANDWIDTH LARGE GRAPHICS MEMORY RAPHICS MEMORY BANDWIDTH LARGE
SYSTEM MEMORY SYSTEM MEMORY

Source: NVIDIA

Memory Processor
Heatsink Processor
Fan

Motherbocard
A : Connection

source: http://static.ddmcdn.com/gif/graphics-card-5.jpg

Modern GPU Hardware

» GPUs have many parallel execution units
and higher transistor counts, while CPUs
have few execution units and higher
clock speeds

» GPUs have much deeper pipelines.

» GPUs have significantly faster and more
advanced memory interfaces as they

need to shift around a lot more data
than CPUs

(Next range is exaops)

Peak speed, operations per second (ops)

Single-Chip GPU vs Supercomputers

108

10°

10

10°

10°

103

10

kiloops megaops gigaops teraops petaops

ops

ASC Purple
CrayT3D 2005
Cray 2 J anuary 1994
1stof 3
Cray 1s
lstof 4 September 1985
May 1978
CE)SCt g)f6 2 0 CDC STAR-100 § Cray X-MP M%':gﬁggz BlueGene/L
April 1964 Istof2 1stof5 2005
(integrated circuits) J uly 1976 J une 1984
IBM 704 (vectors) (parallel vectors)
Istof4 IBM Stretch .
April 1955 ll March 1961 ff CDC 7600 ASC Blue Pacific

1stof5 October 1998

[BM 7090 March 1969
1stof 4 ASC White

' 1stof 2 September 2000
April 1960 p
(transistors) March 1988

IBM 701
1stof2
J une 1954
[

Univac-1

April 1953

] |] | | |

1940

1950 1960 1970 1980 1990 2000 2010

Year introduced

A Modern GPUs

PASCAL GP100 GPU

- DGX SATURNV

SATURN V
(Top 500 list, Nov 2016)

NVIDIA

A Glimpse at At A GPGPU.
GeForce 8800 (2007)

16 highly threaded SM's, >128 FPU's,
367 GFLOPS, 768 MB DRAM,

Host
86.4 GB/S Mem BW,
Input Assembler 463/5 BW to CPU
Thread Execution Manager
!
\ v v
| (I | . NN NN
| (I | . BN .
| (I | . BN
I IO | | HN N
Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data
Cache Cache Cache Cache Cache Cache Cache Cache

ool | I ool rocurel| W vocurel | IR Lrocurel | [0 rovurel | 0 rocurel |l roure |
| | | I | | | I

A Glimpse at A Modern GPU

Streaming Multiprocessor (SM)

~ Host
~ Input Assembler
v v v

v
L JC T I N 0 Dt 0 INC OC Tl 10 I8 I
L JC T I N 0 Dt 0 INC OC Tl 10 I8 I
L JC T I N 0 Dt 0 INC OC Tl 10 I8 I
L JC I 10 N0 0 D 0 INC OC Tl 10 I I

rocure] | I Trocurel | 0] rovurel 0 rocurel 0 Froure |

. . .

Global Memory

>
>

A Glimpse at A Modern GPU

Streaming
Processor (SP) SPs within SM share control logic

~ Host : :
and instruction cache

- Input Assembler
¥ ¥ ¥ ¥ ¥

L JC TN 1 R 0 Dol 0 TNC IC T 1 N I DRl 1 I 10 (R I TN IC T []
L JC IO 1 R 0 DAl 0 TNC IC T 1 N 0 DR 1 I 1 TR 10 WO IC T []
(N[() (OO () OO O[O | (| (O
[JC U T INC I Rt 0 INC 10 DR IC INC 0 Jal 10 IR0 I Tl 10 INC I (1T]

. . .

Global Memory

>
>
>

Scalar vs Threaded

Scalar program (i.e. sequential)
float A[4][8];
for(int i=0;i<4;i++){
for(int j=0;j<8;j++){
AN+

}
}

Multithreaded: (4x1)blocks — (8x1) threads

Grid kernelF contains 4 x 1 thread blocks
block 0,0 block 0,1 block 0,2 block 0,3

Thread Block

thread thread thread thread thread thread thread thread
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

; ; ; ; : ; ; ;
Each thead block contains 8 x 1 threads
Thread

Multithreaded: (2x2)blocks — (4x2) threads

CGrid>

kernelF contains 2 x 2 thread blocks
block 0,0 block 0,1

block 1,0 block 1,1

Thread :
Thread Block

thread thread thread thread
0,0 0,1 0,2 0,3
: 5 3 3

thread thread thread thread
1,0 1,1 1,2 1,3
3 3 3 3

Each thread block contains 4 x 2 threads

Scheduling Thread Blocks on SM

Grid Example:

kernelF contains 2 x 2 thread blocks Scheduling 4 thread b|ocks on 3 SMs.
block 0,0 block 0,1

block 1,0 block 1,1 1,1
0,0 0,1 1,0
Thread L—J L_) L_)
Thread Block SM SM

thread thread thread thread
0,0 0,1 0,2 0,3

; ; ; :

thread thread thread thread
1,0 1,1 1,2 1,3

; ; ; :

Each thread block contains 4 x 2 threads

Another NVIDIA GPU.
FERMI

32 cores/SM

~3B Transistors

1B transistors
192 cores per SMX

~7.

Another NVIDIA GPU:
Kepler

o
8
=
)
2
=
<
@
o
X
S
)
»
7]
o
S
a
X
w
O
o

Memory Controller

Memory Controller

Memory Controller

Memory Controller

Memory Controller

Memory Controller

Nvidia Chip 6K110 Based on
Kepler Architecture

7.1 billion transistors

* More then 1 TFlop of double precision
throughput
— 3x performance per watt of Fermi

* New capabilities:
— Dynamic parallelism

— Hyper-Q (several cores using the same
GPU)

— Nvidia GPUDirect

troller

S
o
=
5
E
@

=

Another NVIDIA GPU:

Maxwell

PCI Express 3.0 Host Interface

~8B transistors

128 cores per SMM
(Nvidia claims a 128
CUDA core SMM

has 90% of the
performance of

a 192 CUDA core SMX.)

Main Goals of Newer GPUs

» Increasing floating-point throughput

» Allowing software developers to focus
on algorithm design rather than the
details of how to map the algorithm to
the hardware

 Power efficiency

Quick Glimpse At Programming

Models

Application » Kernels » Threads » Blocks

Grid

Grid

ODoooodgbooggood
ODdooodoogdood
ODouooodgboodgood
ODoooodoodggod
ODooooggnogogon
ODooooognooooan
Doooouognogogogo
0 oo oooodd

SAAAS SAAAE SAAAS —AAE AR SAA SAARS SAAAS
AN AN AN CAANE AR SAANE SAANS AAN
SANAE AN AN AR AN AN AN AN
A SAAANE AN A AN AN AR AN
SAAASE SAANE AN AR SAANE SAAASE AR AAAS
SAAMBE SAAAE AN A AR AN SAAS AR
AR SAAAE —AAAE SAAAE SAAAE —AAA SAAAS —AAA
SAAABE AANE SANASE AT AR AN AR AN
CAANE CAAAE AN CAAMEE SAANE AN SAARS SAAA S
SAAAE SAAAE AR —CAAAE SAAAE SAAE —SAAAS SAAA
SANAE SANAEE SANAE SANAS SANAE SAAAE SAAAS AN
SAANE AR AN SAAMEE SAAAE A SAARSE SAAA
SAAAE SAAAE SAA —CAAE SAAAE SAAE SAAAS SAAAS
AR AN AN SAANE AN AN SAANS AN
SAAAE CAAAE CAAAE SAANAS SAAAE —AAAE ~AAAS —AAAS

Quick Glimpse At Programming
Models

Application can include multiple kernels

Threads of the same block run on the same SM

— So threads in SM can operate and share memory

— Block in an SM is divided into warps of 32 threads
each

— A warp is the fundamental unit of dispatch in an
SM

Blocks in a grid can coordinate using global
shared memory

Each grid executes a kernel

Scheduling In NVIDIA GPUs

At any point of time the entire device is
dedicated to a single application

— Switch from an application to another takes
~25 microseconds

Modern GPUs can simultaneously execute

multiple kernels of the same application

Two warps from different blocks (or even
different kernels) can be issued and
executed simultaneously

More advanced GPUs can do more than
that but we will concentrate on the above
only here.

Scheduling In NVIDIA GPUs

 Two-level, distributed thread scheduler

— At the chip level: a global work distribution
engine schedules thread blocks to various
SMs

— At the SM level, each warp scheduler
distributes warps of 32 threads to its
execution units.

An SM in Fermi

* 32 cores

* SFU = Special Function Unit

* 64KB of SRAM split betweer
cache and local mem

Each core can perform
one single-precision
fused multiply-add (FMA)
operation in each

clock period and

one double-precision
FMA in two clock periods

The Memory Hierarchy

« All addresses in the GPU are allocated
from a continuous 40-bit (one terabyte)
address space.

* Global, shared, and local addresses are
defined as ranges within this address
space and can be accessed by common
load/store instructions.

* The load/store instructions support 64-bit
addresses to allow for future growth.

The Memory Hierarchy

Local memory in each SM

The ability to use some of this local memory
as a first-level (L1) cache for global memory
references.

Beside L1, each SM has also shared memory.

Because the access latency to this memory is
also completely predictable, algorithms can be
written to interleave loads, calculations, and
stores with maximum efficiency.

Modern GPUs are also equipped with an L2
cache, shared among all SMs.

Fermi Memory Hierarchy
Thread

;

#

GPUs Today

* Are more and more general purpose and
not only for graphics

» Discrete
— separate chip on-board like all Nvidia GPUs
and AMD GPUs
* Integrated

— With the CPU on the same chip like the
GPU in Intel Sandy Bridge and Ivy Bridge

Memory Bus

» Memory bus

— Path between GPU itself and the video card
memory

— Bus width and speed of memory - bandwidth
(GB/s) > more is better
— Example:
« 6TX 680: 6GHz memory and 256-bit interface >
192.2 GB/s
« GTX Titan: 66Hz memory and 384-bit interface >
288.4 GB/s

— Since most modern GPUs use 6GHz memory,
the bus width is the one that makes the
difference.

Conclusions

* The main keywords:
— data parallelism
— kernel, grid, block, and thread
— warp
» Some applications are better run on CPU
while others on GPU
* Main limitations
— The parallelizable portion of the code

— '(\;FP)\S communication overhead between CPU and

— Memory bandwidth saturation

