
Parallel Computing

Mohamed Zahran (aka Z)

mzahran@cs.nyu.edu

http://www.mzahran.com

CSCI-UA.0480-003

Lecture 17: GPUs - Intro

Two Main Goals
for Current Architectures

•Maintain execution speed of old
sequential programs

•Increase throughput of parallel
programs

Two Main Goals
for Current Architectures

•Maintain execution speed of old
sequential programs

•Increase throughput of parallel
programs

CPU

GPU

Source: NVIDIA CUDA C Programming Guide

Performance

DRAM

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU GPU

CPU is optimized for sequential
code performance

DRAM

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU GPU

Almost 10x the bandwidth of multicore
(relaxed memory model)

DRAM

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU GPU

Source: NVIDIA CUDA C Programming Guide

Memory Bandwidth

Where do GPU stand among other chips?

What are GPUs good for?

Regularity + Massive Parallelism

Is Any Application Suitable for GPU?

• Heck no!

• You will get the best performance from
GPU if your application is:
– Computation intensive

– Many independent computations

– Many similar computations

Let’s Remember
Flynn Classification

• A taxonomy of computer architecture

• Proposed by Micheal Flynn in 1966

• It is based two things:
– Instructions

– Data

Single instruction
Multiple
instruction

Single data SISD MISD

Multiple data SIMD MIMD

PU = Processing Unit

Problems Faced by GPUs

• Need enough parallelism

• Under-utilization

• Bandwidth to CPU

Let’s Take A Closer Look:
The Hardware

•PCIe 3.0 speeds ~32 GB-transfers per second per lane
•PCIe 4.0 is about the double of version 3.0
•widest supported links = 16 lanes
•Recently: NVLINK

With the new NVLink

Source: NVIDIA

Bandwidth of ~80GB/s per link

source: http://static.ddmcdn.com/gif/graphics-card-5.jpg

Modern GPU Hardware

• GPUs have many parallel execution units
and higher transistor counts, while CPUs
have few execution units and higher
clock speeds

• GPUs have much deeper pipelines.
• GPUs have significantly faster and more

advanced memory interfaces as they
need to shift around a lot more data
than CPUs

Single-Chip GPU vs Supercomputers

PASCAL GP100 GPU

DGX-1

SATURN V
(Top 500 list, Nov 2016)

x124

A Modern GPUs

A Glimpse at At A GPGPU:
GeForce 8800 (2007)

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

16 highly threaded SM’s, >128 FPU’s,
367 GFLOPS, 768 MB DRAM,

86.4 GB/S Mem BW,
4GB/S BW to CPU

A Glimpse at A Modern GPU
Streaming Multiprocessor (SM)

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

A Glimpse at A Modern GPU
Streaming
Processor (SP) SPs within SM share control logic

and instruction cache

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

Scalar vs Threaded

Scalar program (i.e. sequential)

float A[4][8];

for(int i=0;i<4;i++){

for(int j=0;j<8;j++){
A[i][j]++;

}
}

Multithreaded: (4x1)blocks – (8x1) threads

Multithreaded: (2x2)blocks – (4x2) threads

Scheduling Thread Blocks on SM
Example:
Scheduling 4 thread blocks on 3 SMs.

Another NVIDIA GPU:
FERMI

32 cores/SM

~3B Transistors

Another NVIDIA GPU:
Kepler ~7.1B transistors

192 cores per SMX

Nvidia Chip GK110 Based on
Kepler Architecture

• 7.1 billion transistors
• More then 1 TFlop of double precision

throughput
– 3x performance per watt of Fermi

• New capabilities:
– Dynamic parallelism
– Hyper-Q (several cores using the same

GPU)
– Nvidia GPUDirect

Another NVIDIA GPU:
Maxwell ~8B transistors

128 cores per SMM
(Nvidia claims a 128
CUDA core SMM

has 90% of the
performance of
a 192 CUDA core SMX.)

Main Goals of Newer GPUs

• Increasing floating-point throughput

• Allowing software developers to focus
on algorithm design rather than the
details of how to map the algorithm to
the hardware

• Power efficiency

Quick Glimpse At Programming
Models

Application Kernels

Grid

BlocksThreads

Quick Glimpse At Programming
Models

• Application can include multiple kernels
• Threads of the same block run on the same SM

– So threads in SM can operate and share memory
– Block in an SM is divided into warps of 32 threads

each
– A warp is the fundamental unit of dispatch in an

SM

• Blocks in a grid can coordinate using global
shared memory

• Each grid executes a kernel

Scheduling In NVIDIA GPUs

• At any point of time the entire device is
dedicated to a single application
– Switch from an application to another takes

~25 microseconds

• Modern GPUs can simultaneously execute
multiple kernels of the same application

• Two warps from different blocks (or even
different kernels) can be issued and
executed simultaneously

• More advanced GPUs can do more than
that but we will concentrate on the above
only here.

Scheduling In NVIDIA GPUs

• Two-level, distributed thread scheduler
– At the chip level: a global work distribution

engine schedules thread blocks to various
SMs

– At the SM level, each warp scheduler
distributes warps of 32 threads to its
execution units.

An SM in Fermi

• 32 cores
• SFU = Special Function Unit
• 64KB of SRAM split between

cache and local mem

Each core can perform
one single-precision

fused multiply-add (FMA)
operation in each
clock period and
one double-precision
FMA in two clock periods

The Memory Hierarchy

• All addresses in the GPU are allocated
from a continuous 40-bit (one terabyte)
address space.

• Global, shared, and local addresses are
defined as ranges within this address
space and can be accessed by common
load/store instructions.

• The load/store instructions support 64-bit
addresses to allow for future growth.

The Memory Hierarchy
• Local memory in each SM

• The ability to use some of this local memory
as a first-level (L1) cache for global memory
references.

• Beside L1, each SM has also shared memory.

• Because the access latency to this memory is
also completely predictable, algorithms can be
written to interleave loads, calculations, and
stores with maximum efficiency.

• Modern GPUs are also equipped with an L2
cache, shared among all SMs.

GPUs Today

• Are more and more general purpose and
not only for graphics

• Discrete
– separate chip on-board like all Nvidia GPUs

and AMD GPUs

• Integrated
– With the CPU on the same chip like the

GPU in Intel Sandy Bridge and Ivy Bridge

Memory Bus

• Memory bus
– Path between GPU itself and the video card

memory
– Bus width and speed of memory  bandwidth

(GB/s)  more is better
– Example:

• GTX 680: 6GHz memory and 256-bit interface 
192.2 GB/s

• GTX Titan: 6GHz memory and 384-bit interface 
288.4 GB/s

– Since most modern GPUs use 6GHz memory,
the bus width is the one that makes the
difference.

Conclusions

• The main keywords:
– data parallelism
– kernel, grid, block, and thread
– warp

• Some applications are better run on CPU
while others on GPU

• Main limitations
– The parallelizable portion of the code
– The communication overhead between CPU and

GPU
– Memory bandwidth saturation

