CSCI-UA.0480-003
Parallel Computing

Lecture 11: MPI: Last Touch

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com

Many slides of this
lecture are adopted
and slightly modified from:
» Gerassimos Barlas
* Peter S. Pacheco




Questions

Suppose we have p processes, and we
need to compute a vector sum. If we
ighore the I/0 time, can we get more
than p speedup over sequential version?



Questions

Assume we have p processes and we
need to implement a binary tree search.

Can we get more than p speedup, also
ighoring I/0 delay?



The Communicator(s)

« We are familiar with the communicator
MPI_COMM_WORLD

* A communicator can be thought of a
handle to a group of an ordered set of
processes

* For many applications maintaining
different groups is appropriate

 Groups allow collective operations to
work on a subset of processes



MPI_Comm_split

int MPI_Comm_split(

Called by all processes

MPI_Comm comm, - in comm
int COIOF‘, - Must be non-negative
int

key,
o 4 T ———Rankofthe process in
MPI_Comm HZWCOmm); newcomm

The original communicator does not go away!



MPI_Comm_split

* Partitions the group associated with
comm into disjoint subgroups

* Processes with the same color will be in
the same group

« Within each subgroup, the processes
are ranked in the order defined by the
value of the argument key

— with ties broken according to their rank in
the old group



MPI_Comm_split

» If a process uses the color
MPI_UNDEFINED it won't be included
in the new communicator.



MPI_Comm_free

int MPI_Comm_free(
MPI_Comm * newcomm);

* Deallocation of created communicator
e Better do it if you are not using the comm again.



Example

Split a Large Communicator Into Smaller Communicators

o)[e)le)e
0|0 0O
ol[elle)lc
0|00

OJONONO.

@oYoXoXo)
OO0 OO0

Source: http://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/



Example

// Get the rank and size in the original communicator
int world_rank, world_size;
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
MPI_Comm_size(MPI_COMM_WORLD, &world_size);
int color = world_rank / 4;

// Determine color based on row

// Split the communicator based on the color and use the

// original rank for ordering

MPI_Comm row_comm;

MPI_Comm_split(MPI_COMM_WORLD, color, world_rank, &row_comm);

int row_rank, row_size;

MPI_Comm_rank(row_comm, &row_rank);

MPI_Comm_size(row_comm, &row_size);

printf("WORLD RANK/SIZE: %d/%d \t ROW RANK/SIZE: %d/%d\n",
world_rank, world_size, row_rank, row_size);

MPI_Comm_free(&row_comm);

Source: http://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/



Example
Output:

WORLD RANK/SIZE: 0/16 ROW RANK/SIZE: 0/4
WORLD RANK/SIZE: 1/16 ROW RANK/SIZE: 1/4
WORLD RANK/SIZE: 2/16 ROW RANK/SIZE: 2/4
WORLD RANK/SIZE: 3/16 ROW RANK/SIZE: 3/4
WORLD RANK/SIZE: 4/16 ROW RANK/SIZE: 0/4
WORLD RANK/SIZE: 5/16 ROW RANK/SIZE: 1/4
WORLD RANK/SIZE: 6/16 ROW RANK/SIZE: 2/4
WORLD RANK/SIZE: 7/16 ROW RANK/SIZE: 3/4
WORLD RANK/SIZE: 8/16 ROW RANK/SIZE: 0/4
WORLD RANK/SIZE: 9/16 ROW RANK/SIZE: 1/4
WORLD RANK/STIZE: 10/16 ROW RANK/SIZE: 2/4
WORLD RANK/SIZE: 11/16 ROW RANK/SIZE: 3/4
WORLD RANK/STIZE: 12/16 ROW RANK/SIZE: 0/4
WORLD RANK/STIZE: 13/16 ROW RANK/SIZE: 1/4
WORLD RANK/SIZE: 14/16 ROW RANK/SIZE: 2/4
WORLD RANK/SIZE: 15/16 ROW RANK/SIZE: 3/4

Source: http://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/



MPI_Comm_dup

int MPI_Comm_dup(
MPI_Comm comm,
MPI_Comm * newcomm);

* Creates an exact copy of comm in newcomm



Groups and Communicators

* In reality, processes are ordered in
groups

« Communicators are the mean by which
processes communicate

* A process can belong to more than one
group, with different rank in each.

* .. But we will not got deeper than that
herel



Words of Wisdom!



Don't Forget!

* MPI is a library

- Any MPT operation requires one or more
function calls.

- Not very efficient for very short data
transfers.

- Communication should be aggregated as
much as possible.

 Avoid unnecessary synchronizations.



When to use MPI

Portability and Performance
Irregular Data Structures
Building Tools for Others

— Libraries

Need to Manage memory on a per
process basis



When not to use MPI

* Programs that have irreqular
communication patterns are often
difficult Yo express in MPI's message-
passing model.

» Domain-specific applications with an APT
tailored to that application

* Require Fault Tolerance



Strengths of MPI

Small

— Many programs can be written with only 6
basic functions

Large

— MPT's extensive functionalit gMPI—l contains
about 125 API, let alone MPI-2 and MPI-3)

Scalable
— Point-to-point communication

Flexible

— Don't need to rewrite parallel programs across
platforms



Conclusions

You now know enough to use MPI in
many problem solving

We have not studied all APIs though.

It is fairly easy to understand the rest
of APIs.

The main rules:

— Reduce communication

— Ensure load-balancing

— Increase concurrency



