
Parallel Computing

Mohamed Zahran (aka Z)

mzahran@cs.nyu.edu

http://www.mzahran.com

CSCI-UA.0480-003

Lecture 11: MPI: Last Touch

Many slides of this
lecture are adopted

and slightly modified from:
• Gerassimos Barlas
• Peter S. Pacheco

Questions

 Suppose we have p processes, and we
need to compute a vector sum. If we
ignore the I/O time, can we get more
than p speedup over sequential version?

Questions

 Assume we have p processes and we
need to implement a binary tree search.
Can we get more than p speedup, also
ignoring I/O delay?

The Communicator(s)

• We are familiar with the communicator
MPI_COMM_WORLD

• A communicator can be thought of a
handle to a group of an ordered set of
processes

• For many applications maintaining
different groups is appropriate

• Groups allow collective operations to
work on a subset of processes

MPI_Comm_split

int MPI_Comm_split(

 MPI_Comm comm,

 int color,

 int key,

 MPI_Comm * newcomm);

Called by all processes
in comm

Must be non-negative

Rank of the process in
newcomm

The original communicator does not go away!

MPI_Comm_split

• Partitions the group associated with
comm into disjoint subgroups

• Processes with the same color will be in
the same group

• Within each subgroup, the processes
are ranked in the order defined by the
value of the argument key
– with ties broken according to their rank in

the old group

MPI_Comm_split

• If a process uses the color
MPI_UNDEFINED it won’t be included
in the new communicator.

MPI_Comm_free

int MPI_Comm_free(

 MPI_Comm * newcomm);

• Deallocation of created communicator
• Better do it if you are not using the comm again.

Example

Source: http://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/

Example

Source: http://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/

// Get the rank and size in the original communicator
int world_rank, world_size;
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
MPI_Comm_size(MPI_COMM_WORLD, &world_size);
int color = world_rank / 4;

// Determine color based on row
// Split the communicator based on the color and use the
// original rank for ordering
MPI_Comm row_comm;
MPI_Comm_split(MPI_COMM_WORLD, color, world_rank, &row_comm);

int row_rank, row_size;
MPI_Comm_rank(row_comm, &row_rank);
MPI_Comm_size(row_comm, &row_size);
printf("WORLD RANK/SIZE: %d/%d \t ROW RANK/SIZE: %d/%d\n",
 world_rank, world_size, row_rank, row_size);

MPI_Comm_free(&row_comm);

Example

 WORLD RANK/SIZE: 0/16 ROW RANK/SIZE: 0/4
WORLD RANK/SIZE: 1/16 ROW RANK/SIZE: 1/4
WORLD RANK/SIZE: 2/16 ROW RANK/SIZE: 2/4
WORLD RANK/SIZE: 3/16 ROW RANK/SIZE: 3/4
WORLD RANK/SIZE: 4/16 ROW RANK/SIZE: 0/4
WORLD RANK/SIZE: 5/16 ROW RANK/SIZE: 1/4
WORLD RANK/SIZE: 6/16 ROW RANK/SIZE: 2/4
WORLD RANK/SIZE: 7/16 ROW RANK/SIZE: 3/4
WORLD RANK/SIZE: 8/16 ROW RANK/SIZE: 0/4
WORLD RANK/SIZE: 9/16 ROW RANK/SIZE: 1/4
WORLD RANK/SIZE: 10/16 ROW RANK/SIZE: 2/4
WORLD RANK/SIZE: 11/16 ROW RANK/SIZE: 3/4
WORLD RANK/SIZE: 12/16 ROW RANK/SIZE: 0/4
WORLD RANK/SIZE: 13/16 ROW RANK/SIZE: 1/4
WORLD RANK/SIZE: 14/16 ROW RANK/SIZE: 2/4
WORLD RANK/SIZE: 15/16 ROW RANK/SIZE: 3/4

Source: http://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/

Output:

MPI_Comm_dup

int MPI_Comm_dup(

 MPI_Comm comm,

 MPI_Comm * newcomm);

• Creates an exact copy of comm in newcomm

Groups and Communicators

• In reality, processes are ordered in
groups

• Communicators are the mean by which
processes communicate

• A process can belong to more than one
group, with different rank in each.

• … But we will not got deeper than that
here!

Words of Wisdom!

Don’t Forget!

• MPI is a library
Any MPI operation requires one or more

function calls.

 Not very efficient for very short data
transfers.

 Communication should be aggregated as
much as possible.

• Avoid unnecessary synchronizations.

When to use MPI

• Portability and Performance

• Irregular Data Structures

• Building Tools for Others
– Libraries

• Need to Manage memory on a per
process basis

When not to use MPI

• Programs that have irregular
communication patterns are often
difficult to express in MPI's message-
passing model.

• Domain-specific applications with an API
tailored to that application

• Require Fault Tolerance

Strengths of MPI

• Small
– Many programs can be written with only 6

basic functions

• Large
– MPI’s extensive functionality (MPI-1 contains

about 125 API, let alone MPI-2 and MPI-3)

• Scalable
– Point-to-point communication

• Flexible
– Don’t need to rewrite parallel programs across

platforms

Conclusions

• You now know enough to use MPI in
many problem solving

• We have not studied all APIs though.
• It is fairly easy to understand the rest

of APIs.
• The main rules:

– Reduce communication
– Ensure load-balancing
– Increase concurrency

