
Parallel Computing

Mohamed Zahran (aka Z)

mzahran@cs.nyu.edu

http://www.mzahran.com

CSCI-UA.0480-003

Lecture 10: MPI - IV

Many slides of this
lecture are adopted

and slightly modified from:
• Gerassimos Barlas
• Peter S. Pacheco

A PARALLEL SORTING
ALGORITHM

Copyright © 2010, Elsevier Inc.
All rights Reserved

Sorting

• n keys and p = comm sz processes.
• n/p keys assigned to each process.
• No restrictions on which keys are assigned

to which processes.
• When the algorithm terminates:

– The keys assigned to each process should be
sorted in (say) increasing order.

– If 0 ≤ q < r < p, then each key assigned to
process q should be less than or equal to every
key assigned to process r.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Serial bubble sort

Copyright © 2010, Elsevier Inc.
All rights Reserved

O(n2)
How can we parallelize this?

The problem with bubble-sort

• We cannot execute the compare-swap
out-of-order!

• Can we decouple that?

Odd-even transposition sort
• A sequence of phases.

• Even phases, compare swaps:

• Odd phases, compare swaps:

Copyright © 2010, Elsevier Inc.
All rights Reserved

Example
Start: 5, 9, 4, 3

Even phase: compare-swap (5,9) and (4,3)
 getting the list 5, 9, 3, 4

Odd phase: compare-swap (9,3)
getting the list 5, 3, 9, 4

Even phase: compare-swap (5,3) and (9,4)
 getting the list 3, 5, 4, 9

Odd phase: compare-swap (5,4)
getting the list 3, 4, 5, 9

Copyright © 2010, Elsevier Inc.
All rights Reserved

Serial odd-even transposition sort

Copyright © 2010, Elsevier Inc.
All rights Reserved

Even phase

Odd phase

Communications among tasks in
odd-even sort

Copyright © 2010, Elsevier Inc.
All rights Reserved

Parallel odd-even transposition sort

Copyright © 2010, Elsevier Inc.
All rights Reserved

phase 0 and phase 2
• Processes (0,1) exchange their elements
• Processes (2, 3) exchange their elements
• Processes 0 and 2 keep the smallest 4
• Processes 1 and 3 keep the largest 4

phase 1 and phase 3
• Processes (1, 2) exchange their elements
• Process 1 keeps smallest 4 and process 2 keeps largest 4

Assume P processors (=4) and list n (=16) numbers

Pseudo-code

Copyright © 2010, Elsevier Inc.
All rights Reserved

Compute_partner

Copyright © 2010, Elsevier Inc.
All rights Reserved

•Constant defined by MPI
• When used as source/destination in point-to-point comm, no comm will
 take place.

Safety in MPI programs

• The MPI standard allows MPI_Send to
behave in two different ways:
– it can simply copy the message into an MPI

managed buffer and return,

– or it can block until the matching call to
MPI_Recv starts.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Safety in MPI programs

• Many implementations of MPI set a
threshold at which the system switches
from buffering to blocking.
– Relatively small messages will be buffered

by MPI_Send.

– Larger messages, will cause it to block.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Safety in MPI programs
• If the MPI_Send executed by each

process blocks, no process will be able
to start executing a call to MPI_Recv,
and the program will hang or deadlock.

• Each process is blocked waiting for an
event that will never happen.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Safety in MPI programs

• A program that relies on MPI provided
buffering is said to be unsafe.

• Such a program may run without
problems for various sets of input, but
it may hang or crash with other sets.

Copyright © 2010, Elsevier Inc.
All rights Reserved

So … What can we do?

MPI_Ssend

• An alternative to MPI_Send defined by
the MPI standard.

• The extra “s” stands for synchronous
and MPI_Ssend is guaranteed to block
until the matching receive starts.

Copyright © 2010, Elsevier Inc.
All rights Reserved

How does MPI_Ssend help?

• Replace all MPI_Send calls in your code
with MPI_Ssend

• If your program does not hang or crash
 the original program is safe

• What do we do if we find out that our
program is not safe?

• The main problem is due to the fact
that all processes send then receive…
Let’s change that!

Restructuring communication
original

Updated
version

Note: The above two versions show a ring communication
(i.e. processor comm_sz-1 sends to process 0.)

MPI_Sendrecv

• An alternative to scheduling the
communications ourselves.

• Carries out a blocking send and a
receive in a single call.

• Especially useful because MPI schedules
the communications so that the program
won’t hang or crash.

• Replaces a pair of consecutive send and
receive calls.

Copyright © 2010, Elsevier Inc.
All rights Reserved

MPI_Sendrecv

Copyright © 2010, Elsevier Inc.
All rights Reserved

MPI_Sendrecv_replace

Copyright © 2010, Elsevier Inc.
All rights Reserved

int MPI_Sendrecv_replace{
 void * buf_p,
 int buf_size,
 MPI_Datatype buf_type,
 int dest,
 int send_tag,
 int recv_tag,
 MPI_Comm communicator,
 MPI_Status * status_p };

In this case,
what is in buf_p
will be sent and

replaced by
what is received.

Back to our pseudo-code

How will you implement this?

Parallel odd-even transposition sort

Copyright © 2010, Elsevier Inc.
All rights Reserved

At the end,
my_keys[] will have

the smallest n/p keys of
local and received keys

Run-times of parallel odd-even sort

Copyright © 2010, Elsevier Inc.
All rights Reserved

(times are in milliseconds)

Run-times of parallel odd-even sort
(Larger problem size)

Copyright © 2010, Elsevier Inc.
All rights Reserved

Run-times of parallel odd-even sort
(Larger problem size)

Copyright © 2010, Elsevier Inc.
All rights Reserved

PREFIX-SUM

Copyright © 2010, Elsevier Inc.
All rights Reserved

What is that?
 • Generalization of global sum

• Input: vector x[] of n elements

• Output: vector prefix_sum[] of n
elements, such that:
– prefix_sum[0] = x[0]

– prefix_sum[1] = x[0] + x[1]

– prefix_sum[2] = x[0] + x[1] + x[2]

– prefix_sum[n-1] = x[0] + x[1] + … + x[n-1]

MPI_Scan
int MPI_Scan(
 void * sendbuf,
 void * recvbuf,
 int count,
 MPI_Datatype datatype,
 MPI_Op op,
 MPI_Comm comm);

Returns for process of rank i,
the prefix reduction values for elements 0 … i

MPI_BAND

Bitwise AND

MPI_BOR

Bitwise OR

MPI_BXOR

Bitwise XOR

MPI_LAND

Logical AND

MPI_LOR

Logical OR

MPI_LXOR

Logical XOR

MPI_MAX

Maximum value

MPI_MAXLOC

Maximum value and location

MPI_MIN

Minimum value

MPI_MINLOC

Minimum value and location

MPI_PROD

Product

MPI_SUM

Sum

Be Careful

Assume 4 processes:

[1 2 3] [4 5 6] [7 8 9] [10 11 12]

The output of MPI_Scan, for MPI_SUM, is:

[1 2 3] [5 7 9] [12 15 18] [22 26 30]

NOT:

[1 3 6] [10 15 21] [28 36 45] [55 66 78]

Conclusions

• Choosing the correct algorithm for a
problem to be solved by MPI depends
on:
– Opportunities of parallelization

– The complexity

