
Parallel Computing

Mohamed Zahran (aka Z)

mzahran@cs.nyu.edu

http://www.mzahran.com

CSCI-UA.0480-003

Lecture 1: Why Parallel Computing?

Who Am I?

• Mohamed Zahran (aka Z)

• Computer architecture/OS/Compilers
Interaction

• http://www.mzahran.com

• Office hours: Tuesdays 2-4 pm
– or by appointment

• Room: WWH 320

Main Goals of this Course

• Why parallel computing is the current and
next big thing?

• How does the parallel hardware look like?

• What are the challenges of parallel
computing?

• How to write parallel programs and make
the best use of the underlying hardware?

My wish list for this course:

• Learn to think in parallel
• Make the best choice of hardware

configuration and software tools/languages
• Be ready for the competitive market or for

your next step in the academic/research
ladder

• Learn how to progress way beyond the final
exam!

• Enjoy the course!

Textbook

• Author : Peter Pacheco

• Release Date: 2011

• Publisher: Morgan Kaufmann

• Print Book ISBN :

9780123742605

Carnegie Mellon

Course Components

• Lectures
– Higher level concepts (slides + reading material)

• Homework assignments (20%)
– The theoretical part
– Usually due one week later

• Programming labs (20%)
– 1-2 weeks each
– Provide in-depth understanding of some aspect of

systems
• One midterm exam (20%)
• One final exam (40%)

Carnegie Mellon

Policies: Assignments

• You must work alone on all assignments
– Post all questions on NYU classes forums,
– You are encouraged to answer others’

questions, but refrain from explicitly giving
away solutions.

• Hand-ins
– Submission through NYU classes
– (-1) for each day of late submission up to 3
days then zero for the corresponding
assignment/lab

Policies:
The following excuses are not accepted and result in penalty:

• I tried to submit one minute after the deadline but
I couldn’t.

• Asking a question that has been asked and
answered before in the forum.
– Hint: Read Questions and Answers in the forum, even

of you don’t have any questions. You will learn a lot.
• I spent 100 hrs/week studying for this course, why

didn’t I get a high grade?
– Do you really think that your grade is just a function of

how much you study?
• What do I concentrate on when studying for the

exam?
– Do you really mean that some parts of the material are

not important?

Policies:
Arguing a grade of an assignment, lab, or exam.

You have one week from the time of
receiving your grade to argue.

After that, no arguments are allowed.

Now, what is this story of
parallel computing, multicore,

multiprocessing, multi-this and
multi-that?

The Famous Moore’s Law

It was implicitly assumed that more transistors per chip = more performance. BUT …

Effect of Moore’s law

• ~1986 – 2002  50% performance increase

• Since 2002  ~20% performance increase

Hmmm …

• Why do we care? 20%/year is still nice.
• What happened at around 2002?
• Can’t we have auto-parallelizing programs?

Why do we care?

• More realistic games

• Decoding the human genome

• More accurate medical applications

The list goes on and on ….

As our computational power increases  the number of problems
we can seriously consider also increases.

Climate modeling

Copyright © 2010, Elsevier Inc.
All rights Reserved

Protein folding

Copyright © 2010, Elsevier Inc.
All rights Reserved

Drug discovery

Copyright © 2010, Elsevier Inc.
All rights Reserved

Energy research

Copyright © 2010, Elsevier Inc.
All rights Reserved

Data analysis

Copyright © 2010, Elsevier Inc.
All rights Reserved

Hardware Improvement

Better Software

People get used to the
software

People ask for more
improvements

Positive Cycle
of Computer

Industry

Why did we build parallel machines
(and continue to do so)?

(multicore, multiprocessors,
multi-anything!)

Power Density

4004

8008

8080

8085

8086

286
386

486
Pentium®

P6

1

10

100

1000

10000

1970 1980 1990 2000 2010

Year

Po
w

er
 D

en
si

ty
 (

W
/c

m
2
)

Hot Plate

Nuclear

Reactor

Rocket

Nozzle

Sun’s
Surface

Source: Patrick
Gelsinger, Intel

Scaling clock speed (business as usual) will not work

Moore’s law is giving us more transistors than we can afford!

This is what happened at around 2002!

Multicore Processors Save Power

Power = C * V2 * F Performance = Cores * F

Let’s have two cores

Power = 2*C * V2 * F Performance = 2*Cores * F

Power = 2*C * V2/4 * F/2 Performance = 2*Cores * F/2

But decrease frequency by 50%

Power = C * V2/4 * F Performance = Cores * F

A Case for Multiple Processors

• Can exploit different types of parallelism

• Reduces power

• An effective way to hide memory latency

• Simpler cores

= easier to design and test

= higher yield

= lower cost

An intelligent solution

Copyright © 2010, Elsevier Inc.
All rights Reserved

• Instead of designing and building faster
microprocessors, put multiple
processors on a single integrated
circuit.

Now it’s up to the programmers
• Adding more processors doesn’t help

much if programmers aren’t aware of
them…

• … or don’t know how to use them.

• Serial programs don’t benefit from this
approach (in most cases).

Copyright © 2010, Elsevier Inc.
All rights Reserved

The Need for Parallel Programming

Parallel computing: using multiple processors in parallel to
solve problems more quickly than with a single processor

Examples of parallel machines:
A cluster computer that contains multiple PCs combined

together with a high speed network
A shared memory multiprocessor (SMP) by connecting

multiple processors to a single memory system
A Chip Multi-Processor (i.e. multicore) (CMP) contains

multiple processors (called cores) on a single chip

Attempts to Make Multicore
Programming Easy

• 1st idea: The right computer language
would make parallel programming
straightforward
– Result so far: Some languages made

parallel programming easier, but none has
made it as fast, efficient, and flexible as
traditional sequential programming.

Attempts to Make Multicore
Programming Easy

• 2nd idea: If you just design the
hardware properly, parallel programming
would become easy.
– Result so far: no one has yet succeeded!

Attempts to Make Multicore
Programming Easy

• 3rd idea: Write software that will
automatically parallelize existing
sequential programs.
– Result so far: Success here is inversely

proportional to the number of cores!

Parallelizing a sequential program
is not very easy!

• It is not about parallelizing every step
of the sequential program.

• Maybe we need a totally new algorithm.

• Our parallelization strategy also
depends on the software!

Example
• Compute n values and add them together.

• Serial solution:

Copyright © 2010, Elsevier Inc.
All rights Reserved

Example (cont.)
• We have p cores, p much smaller than n.

• Each core performs a partial sum of
approximately n/p values.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Each core uses it’s own private variables

and executes this block of code
independently of the other cores.

Example (cont.)
• Once all the cores are done computing

their private my_sum, they form a
global sum by sending results to a
designated “master” core which adds
the final result.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Example (cont.)

Copyright © 2010, Elsevier Inc.
All rights Reserved

Copyright © 2010, Elsevier Inc.
All rights Reserved

But wait!

There’s a much better way
to compute the global sum.

Better parallel algorithm

• Don’t make the master core do all the
work.

• Share it among the other cores.
• Pair the cores so that core 0 adds its

result with core 1’s result.
• Core 2 adds its result with core 3’s

result, etc.
• Work with odd and even numbered pairs

of cores.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Better parallel algorithm (cont.)

• Repeat the process now with only the
evenly ranked cores.

• Core 0 adds result from core 2.

• Core 4 adds the result from core 6, etc.

• Now cores divisible by 4 repeat the
process, and so forth, until core 0 has
the final result.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Multiple cores forming a global
sum

Copyright © 2010, Elsevier Inc.
All rights Reserved

Analysis
• In the first version, the master core

performs 7 receives and 7 additions.

• In the second version, the master core
performs 3 receives and 3 additions.

• The improvement is more than a factor
of 2.

Copyright © 2010, Elsevier Inc.
All rights Reserved

Analysis (cont.)

• The difference is more dramatic with a
larger number of cores.

• If we have 1000 cores:
– The first example would require the master to

perform 999 receives and 999 additions.
– The second example would only require 10

receives and 10 additions.

• That’s an improvement of almost a factor
of 100!!

Copyright © 2010, Elsevier Inc.
All rights Reserved

Two Ways Of Thinking ...
And one Strategy!

• Strategy: Partitioning!

• Two ways of thinking:
– Task-parallelism

– Data-parallelism

• Some constraints:
– communication

– load balancing

– synchronization

Conclusions

• Due to technology constraints, we
moved to multicore processors.

• Parallel programming is now a must 
The free lunch is over!

• There are different flavors of parallel
hardware that we will discuss and also
many flavors of parallel programming
languages that we will deal with.

